STUDY OF WATER RESOURCE MANAGEMENT

Rocky Flats Plant Site

Task 23
of the
Zero-Offsite Water-Discharge Study

Prepared For:

EG&G ROCKY FLATS, INC.
Facilities Engineering
Plant Civil-Structural Engineering
P.O. Box 464
Golden, CO 80402-0464

BOA Contract BA 72429PB Contract No. BA 79844GS

Prepared By:

ADVANCED SCIENCES, INCORPORATED
405 Urban Street, Suite 401
Lakewood, CO 80228

Draft: May 14, 1991 Final: May 28, 1991

DISCLAIMER

This report was prepared as a result of work sponsored by a contractor to an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any contractor or subcontractor, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service, any trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TABLE OF CONTENTS

EXE	CUTIVI	E SUMMARY vii
1.0	INTR	ODUCTION
	1.1	BACKGROUND 1
	1.2	REGULATORY DRIVING FORCES
2.0	BRIE	F REVIEW OF THE CURRENT WATER RESOURCE
	MAN	AGEMENT SYSTEMS AT THE RFP 7
	2.1	SOURCES OF WATER ENTERING THE RFP 8
		2.1.1 Water Imported for Plant Usage
		2.1.2 Precipitation
		2.1.3 Upstream Drainage Areas
	2.2	SOURCES OF POTENTIAL WATER-RELATED CONTAMINATION
		FROM THE RFP 10
		2.2.1 Industrial Process Water and Wastewater
		2.2.2 Sanitary Waste Streams
		2.2.3 Surface Water Runoff
		2.2.4 Surface Water Runoff from Disposal Sites and Individual
		Hazardous Substance Sites (IHSS)s
		2.2.5 Subsurface Leaching from Disposal Sites and IHSSs 12
3.0	REVI	EW OF INTERRELATIONSHIPS OF OTHER ZERO-OFFSITE
	WATI	ER-DISCHARGE STUDIES WITH THE WATER RESOURCES
	MANA	AGEMENT PROGRAM 13
	3.1	INFORMATION REPORTING STRUCTURE 13
	3.2	RELATIONSHIPS AMONG THE ZERO-OFFSITE WATER-
		DISCHARGE STUDIES 18

Study of Water Resource Management Zero-Offsite Water-Discharge Study

FINAL
Date: May 28, 1991
Revision: 0

TABLE OF CONTENTS - Continued

	3.3	REVIEW OF OTHER TASKS	18
4.0	INTE	GRATION OF DATABASES AND INFORMATION SYSTEMS	21
	4.1	APPROACH	21
	4.2	PRELIMINARY RESULTS	23
5.0		OMMENDED WATER-RELATED MONITORING AND REPORTING	
	SYST	EM	27
6.0	ACK	NOWLEDGEMENTS	29
7.0	BIBL	JOGRAPHY	20

LIST OF TABLES

<u>Table</u>		Page
Table 1	Regulations and Agreements Affecting Water Management at RFP	. 4
Table 2	Other Laws Affecting Water Management at RFP	. 5
Table 3	Monitoring Groups	. 17
Table 4	Zero-Offsite Water-DischargeS Related Task Groups	. 20
Table 5	Initial Zero-Offsite Water-Discharge Model Results	. 24
	LIST OF FIGURES	
Figure 1	Study of Water Resource Management, General Approach	
Figure 2	Water Balance	
Figure 3	Task Interrelationships Diagram	
Figure 4	Decision Support System Approach	
	LIST OF APPENDICES	
App. A	COMB Program Code	
App. B	ZOWD Program Code	
App. C	Sample ZOWD Run Disk Output	
App. D	ZOWD/COMB User's Manual	
App. E	ZOWD DBASE Input File	
App. F	Water Management Summaries for Tasks 1 through 29	

EXECUTIVE SUMMARY

This report has been prepared for one of several studies being conducted for, and in the

development of, a Zero-Offsite Water-Discharge Plan for the Rocky Flats Plant (RFP) in response

to Item C.7 of the Agreement in Principle (AIP) between the Colorado Department of Health

(CDH) and the U.S. Department of Energy (DOE) (DOE and State of Colorado, 1989). The

CDH/DOE Agreement Item C.7 states "Source Reduction and Zero-Discharge Study: Conduct

a study of all available methods to eliminate Rocky Flats discharges to the environment including

surface waters and ground water. This review should include a source reduction review" (DOE

and State of Colorado, 1989, p. 8).

Several aspects of water-resources management are important components of any strategy to

eliminate water discharges from the RFP. The objective of this report is to describe an applicable

methodology for the investigation and evaluation of water-resources management alternatives at

the RFP. Data and information sources relevant to developing an integrated planning system to

allow for the matching of water demands with water sources, including wastewater, surface

runoff, and ground water at the RFP were the focus of this study.

The general approach to this study consisted of describing the setting, reviewing other water

management activities at the RFP, developing a dynamic water management planning method,

and making recommendations for the use and maintenance of the management planning method.

Three basic sources contribute water to the RFP site. These are water specifically imported into

the plant to provide industrial and domestic needs, precipitation falling on the plant site, and

water which enters the plant on the surface or underground from upstream sources.

FINAL

Revision: 0

Resource Management

Study of Water

Zero-Offsite Water-Discharge Study

Date: May 28, 1991

ν

The following is a general listing of the types of potential sources of contamination from the RFP sources to the surface and ground-water systems of the region:

- Industrial Process Water and Wastewater
- Sanitary Waste Streams
- Surface Water Runoff
- Surface Water Runoff from Disposal Sites and Individual Hazardous Substance Sites (IHSSs)
- Subsurface Leaching from Disposal Sites and IHSSs

The information developed in other tasks of the Zero Off-Site Water Discharge (ZOWD) Study, as well as external efforts, was reviewed so as to develop a structure for current and future use of this information in the overall decision-making process regarding water-resources management. The structure was used to report the information from each task relevant to the overall water-resources management effort, the actual data were extracted from the studies available at this time, and a description of the major interrelationships among the 30 tasks of the Zero-Offsite Water-Discharge Study and other water management studies at RFP.

The work of each of the tasks of the Zero-Offsite Water-Discharge Study was scoped to address a specific issue regarding basic data or required action to achieve the goals of the Zero-Offsite Water-Discharge Study. In spite of an overall agreement on general format between tasks, it is not easy to assimilate and compare the information presented in each of the task-level reports for decision-making purposes. Searching for combinations of alternative courses of action described in the individual reports, keeping track of assumptions and objectives, and estimating the cumulative effect of these individual actions can be facilitated by a structured data reporting process. An attempt was made to balance the need for detailed information by the decision-support system presented in a later section with the availability of data and actions which are cloaked in uncertainty, and which are dependent upon a large set of externalities over which the

water resources planners in the case of the RFP have little or no control. The reader is

encouraged to refer to the subordinate task reports themselves for more detail on any area of

particular interest.

The various subordinate studies of the Zero-Offsite Water-Discharge Study are often related to

each other in the sense that they provide important inputs to each other and the assumptions

developed for one task may influence the results of another. For example, implementing the

recommendations of one task may preclude further discharge reductions which would be possible

if the recommendations of another task were followed independently.

The basic water management information developed in each of the other subordinate tasks to the

Zero-Offsite Water-Discharge Study are presented in this report. This information includes the

impact, on each water system within the RFP, of the task recommendations, as well as

environmental and cost impacts.

The Zero-Offsite Water-Discharge decision support system (DSS) described in this report is a

process whereby the goals of the Zero-Offsite Water-Discharge program can be evaluated in

terms of the data and actions developed in each of the subordinate tasks as well as the outside

influences of other studies and/or decisions.

The approach was to develop a computerized DSS which permits the decision-maker some

flexibility in defining goals and which suggests useful combinations of actions to achieve those

goals. The concept is iterative and interactive, leading to an optimization of the Zero-Offsite

Water-Discharge Plan. Another important feature of the decision support system is that it accepts

changes, not just in the goals for the Plan but also in the information base which drives it. The

DSS assists the user in the following efforts:

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Date: May 28, 1991

Revision: 0

vii

Goal Setting:

A number of possible definitions of the term "zero-offsite water-discharge" have been

discussed. These have ranged from extremely strict (an absolute ban on any type of

discharge of water beyond the RFP boundaries) to relatively mild (an attempt to prevent

as much contamination as technically and economically feasible from leaving the plant

boundaries but permitting "clean" water to leave). The system begins by requiring the

user to define his initial goals.

Information Base Maintenance:

It is expected that the data which are used by the system to evaluate the feasibility of the

defined goals will change often. Changes to the basic data can occur in the areas of

monitoring information, new or updated information developed as part of another task,

or relevant external information such as actions or data specified in other water

management studies. Updating the information base is done in a dBase III+ environment,

which results in a file accessible by the ZOWD DSS computer code.

Consultation:

At this point, the system compares the demands of the goals to the constraints and

opportunities of the information contained in the data base. The system then suggests one

or more courses of action which best achieve the desired goals. An opportunity exists at

this point to go back to an earlier stage in the process to change information or goals.

The basic computations carried out by the system are fundamentally simple so as to make the

results intuitively acceptable as much as possible. For example, the total changes in water

discharge forecast by each task are aggregated by simply adding these together, unless there is

specific information in the data base which precludes this approach (the data indicates that the

discharge reduction or increase is dependent on actions to be taken in linked tasks.) The system

viii

is not a replacement for informed judgment; it is simply an aid.

Study of Water Resource Management

Date: May 28, 1991

FINAL

A sample run of the ZOWD DSS is found in Appendix C. The information base used for this sample consists of the data found in the dBase file reproduced in Appendix E. Initial results are given in Section 4.2, although these should not be considered definitive pending the availability of additional Zero-Offsite Water-Discharge task results. The ZOWD DSS may be a useful tool in the completion of Task 30, Consolidation and Zero-Discharge Plan (ASI, 1990i).

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991
Revision: 0

1.0 INTRODUCTION

1.1 BACKGROUND

This report has been prepared for one of several studies being conducted for, and in the

development of, a Zero-Offsite Water-Discharge Plan for the Rocky Flats Plant (RFP) in response

to Item C.7 of the Agreement in Principle (AIP) between the Colorado Department of Health

(CDH) and the U.S. Department of Energy (DOE) (DOE and State of Colorado, 1989). The

CDH/DOE Agreement Item C.7 states "Source Reduction and Zero-Discharge Study: Conduct

a study of all available methods to eliminate Rocky Flats discharges to the environment including

surface waters and ground water. This review should include a source reduction review", (DOE

and State of Colorado, 1989, p. 8).

Several aspects of water-resources management are important components of any strategy to

eliminate water discharges from the RFP. The objective of this report is to describe an applicable

methodology for the investigation and evaluation of water-resources management alternatives at

the RFP. Data and information sources relevant to developing an integrated planning system to

allow for the matching of water demands with water sources, including wastewater, surface

runoff, and ground water at the RFP were the focus of this study.

The general approach to this study consisted of the following steps:

A. Describe the setting

• Describe the applicable regulatory actions affecting Zero-Offsite Water-

Discharge and other related environmental efforts; and

• Identify potential benefits of water-resources management on the Zero-

Offsite Water-Discharge Plan.

B. Review other water management activities at the RFP

Review the Surface Water Management Plan (WWE, 1991);

Study of Water Resource Management

FINAL Date: May 28, 1991

Zero-Offsite Water-Discharge Study

1

- Review the preliminary results and relationships of the other Zero-Offsite Water-Discharge tasks, and their impact on water management; and
- Investigate other on-going management efforts which may impact water resources.

C. Develop a dynamic water management planning method

- Present a method for the integration of hydrologic and water-resourcesrelated data bases and information systems, including monitoring data;
- Obtain agreement on a process for setting interim and final goals for the Zero-Offsite Water-Discharge Plan. As part of this effort, identify the stakeholders important to implementing Zero-Offsite Water-Discharge (eg. those with significant input and/or interest in the process.);
- Devise a procedure for combining goals, monitoring data, external inputs, environmental and mission constraints, economic and funding limits, and on-going plan elements to produce a set of prioritized short-term actions and longer-term strategies; and
- Develop an interface between the water management planning method and decision-makers.

D. Make recommendations for use of the water management planning method

- Maintenance needs
- Schedule Framework

The interactions of these steps are shown schematically in Figure 1.

1.2 REGULATORY DRIVING FORCES

In order to understand the need for an integrated water-resources management plan aimed at minimizing offsite water discharge, the first step is to review the regulatory driving forces applicable to RFP water resources. Operations at the RFP have been curtailed since the summer 1989 investigatory actions at the RFP (DOE, 1989) which cited severe health, safety, and

environmental problems at the facility. Several intergovernmental agreements were developed in response to this situation to ensure compliance with State and federal health, safety, and environmental laws and regulations prior to full resumption of operations at the RFP. In addition, there are a number of laws and regulations which affect the management of waters at the RFP, as shown in Tables 1 and 2.

The future mission of the RFP remains in doubt. There are at least three Environmental Impact Statements (EISs) and numerous Environmental Assessments (EAs) which are in process or about to begin which will affect the future of the plant (EG&G, 1991). Any of the EISs or EAs may result in the implementation of mitigation plans which may influence water management at the RFP. These EAs and EISs include:

- Programmatic EIS on the future of the U.S. Weapons Complex (EG&G, 1991). This programmatic EIS is nation-wide in scope and will have a direct influence on the future of the RFP. Included in the scope of this EIS are such issues as alternative locations for plutonium fabrication other than RFP.
- Programmatic EIS on the Environmental Restoration (ER) programs throughout
 the U.S. nuclear weapons facilities (EG&G, 1991). This EIS will influence
 ongoing ER programs at RFP and may constrain the range of actions available to
 water managers at RFP. Comprehensive Environmental Response, Compensation
 and Liability (CERCLA or Superfund) Act actions may take precedence over EIS
 recommendations.
- Sitewide EIS (SWEIS) for the RFP (EG&G, 1991). This EIS will replace and supplement the 1980 Final EIS for the RFP (DOE, 1980). It is expected that the SWEIS will deal with the environmental issues associated with RFP over the relatively short term, that is, the next five to ten years. Issues appropriate for this

Table 1 Regulations and Agreements Affecting Water Management at RFP.

Regulations

Atomic Energy Act [42 USC 2011 et seq.] and Department of Energy Organization Act [42 USC 7101 et seq.]

- Department of Energy Orders (5400.1, 5400.5)
- Executive Order 12088

Clean Water Act [33 USC 1251 et seq., as amended]

• Environmental Protection Agency Regulations [40 CFR 121-133]

Colorado Water Quality Control Act [Colo. Revised Statutes, Title 25 - Health, Article 8]

 Colorado Department of Health Regulations [Code of Colorado Regulations, Title 5, Dept. of Health, Chapter 1002 - Water Quality Control Commission, Articles 3-7]

Agreements

Agreement in Principle (AIP)

Between DOE and Colorado Department of Health. Provides for sampling
of surface waters and treated drinking water. Provides for a Zerodischarge study (this Zero-Offsite Water-Discharge Study).

Federal Facilities Compliance Agreement (FFCA)

 Between DOE and US EPA, under Executive Order 12088. Provides for compliance with water pollution control standards and appropriate operation of the Sewage Treatment Plant.

Interagency Agreement (IAG)

• Between DOE, the State of Colorado, and US EPA. Provides guidance for control and cleanup of hazardous wastes under RCRA and CERCLA.

Table 2
Other Laws Affecting Water Management at RFP

	Other Applicable Laws		
_	National Environmental Policy Act (NEPA) [42 USC §§ 4321 to 4347 (1977 & West Supp. 1989)]		
	Resource Conservation and Recovery Act (RCRA) [42 USC § 6901 et seq., as amended]		
	Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) [42 USC § 9601 et seq., as amended]		
	Clean Air Act (CAA) [42 USC § 7401 et seq., as amended]		
	Colorado Radiation Control Act [Colorado Revised Statute, Section 25-11-101 et seq.]		
	Colorado Water Rights Laws [Colorado Revised Statute, Sections 37-92-305(5), and 37-80-120(3) (1973)]		

EIS will include cumulative impact of the many activities at the RFP, including those associated with the CDH/DOE Agreement in Principle which is the primary

driving force for this study.

Other, site-specific or building-specific EAs and EISs have been and will continue to be developed as required to comply with the National Environmental Policy Act

and DOE directives. These include EAs being developed for environmental restoration sites, such as the 881 Hillside Interim Remedial Actions (DOE, 1990a)

EG&G recently published a "Corrective Action Plan" (DOE, 1990b) to synthesize the

DOE/EG&G response to the 1989 Tiger Team report (DOE, 1989). The Tiger Team assessment

was an independent review of the RFP operations and their compliance with applicable federal,

State, and local regulations, permit requirements, agreements, orders and consent decrees, and

DOE orders. In addition to evaluating compliance, the Tiger Team examined RFP operations for

conformance with relevant "best" and "accepted" industrial practices to test the adequacy of the

RFP's management programs.

The Corrective Action Plan (DOE, 1990b) reviews the 52 audit findings and 43 best management

practices contained in the Tiger Team Report. A formal planning process for waste and

environmental programs was established through the preparation of five-year planning documents

which are to be updated annually. Additional funds as necessary have been requested to support

programs identified within the five-year plan. It is expected that the results of this zero-offsite

water-discharge water resource management plan will be input into the five-year planning

process.

Study of Water Resource Management Zero-Offsite Water-Discharge Study

FINAL Date: May 28, 1991

Revision: 0

2.0 BRIEF REVIEW OF THE CURRENT WATER RESOURCE MANAGEMENT SYSTEMS AT THE RFP

This section is intended to briefly acquaint the reader with the water-resources management setting at RFP and as such presents only an overview of the water resources affecting the RFP. For a more detailed treatment of the subject, the reader is directed to the recently completed, Draft Surface Water Management Plan (WWE, 1991), and to the Groundwater Protection and Monitoring Program Plan (EG&G, 1990). Other zero-offsite water-discharge plan subordinate studies and their respective Project Management Plans also provide more detailed information, including the following:

- Task 4 Water Yield and Water-Quality Study of Walnut and Woman Creek
 Watersheds (ASI, 1990d)
- Task 5 Confirmation of Rainfall/Runoff Relationships (ASI, 19911)
- Task 6 Storm Runoff Quantity for Various Design Events (ASI, 1991a)
- Task 9 Design Recurrence Intervals Study (ASI, 1990f)
- Task 14 Surface-Water and Ground-Water Rights Study in the Vicinity of Rocky Flats Plant (ASI, 1991i)
- Task 16 Water Yield and Water Quality Study of Other Sources Tributary to
 Standley Lake and Great Western Reservoir (ASI, 1990g)
- Task 17 Alternatives to Zero Discharge (ASI, 1991e)
- Task 21 Temporary Water Storage Capabilities Study (ASI, 1991g)
- Task 22 Ground Water Recharge Study (not completed as of this printing)
- Task 24 Bypass Upstream Flows Around Rocky Flats Plant Study (ASI, 1990h)
- Task 25 Study of Downstream Erosion Potential (ASI, 1991m)
- Task 26 Feasibility of Ground-Water Cutoff/Diversion Study (ASI, 1991j)
- Task 29 Non-Tributary Ground-Water Study (ASI, 1991k)

The following sections present a review of the sources of water entering the RFP, and the origins

of contamination from the RFP to the surface and groundwater systems.

2.1 SOURCES OF WATER ENTERING THE RFP

Three basic sources contribute water to the RFP site area, which is defined here as the area

bounded within and including the buffer zone. These are water specifically imported into the

plant to provide industrial and domestic needs, precipitation falling on the plant site, and water

which enters the plant on the surface or underground from upstream sources. A schematic of the

current water balance at the RFP is shown as Figure 2 (ASI, 1991c).

2.1.1 Water Imported for Plant Usage

The RFP includes a water treatment plant which is supplied with raw water by the Denver Water

Board in accordance with a contract dated October 28, 1952 (WWE, 1991). Under this contract,

RFP is entitled to a supply of up to 1.5 million gallons per day, although this amount is not

guaranteed and the actual amounts supplied vary over the period. From 1980 to 1989, amounts

purchased varied from a low of 92 million gallons per year (MGY) in 1981 to 133.7 MGY in

1986. In recent years the amount has averaged close to 130 MGY or 0.36 million gallons per

day (ASI, 1991c). The contract is renewed each year. The water treatment plant provides

domestic, fire fighting, and industrial water to the plant.

2.1.2 Precipitation

The RFP receives an average of approximately 15.2 inches of precipitation annually (ASI,

1991g). The bulk of this precipitation tends to occur in sporadic, intense storms rather than in

a evenly-distributed manner, and eighty percent of the precipitation occurs between April and

September (WWE, 1991). The maximum recorded 24-hour rainfall at the plant was 3.40 inches,

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991

Revision: 0

during May, 1969 (WWE, 1991). The estimate of runoff resulting from this precipitation has

been addressed in several of the other Zero-Offsite Water-Discharge studies and is subject to

some uncertainty, as is to be expected in this climatic and topographic setting (ASI, 1990f,

1990g, 1991a, 1991g). Average annual runoff from the Controlled Area (and surroundings

totaling 1.9 square miles) was about 125 acre-feet/year (ASI, 1991i).

2.1.3 Upstream Drainage Areas

Upstream runoff and upgradient groundwater entering the RFP area and underlying subsurface

aquifers are not plentiful due to the relatively small size of the upstream drainage areas and the

location of the RFP atop a low mesa (see ASI, 1990j for more information on geologic and

topographic features of the RFP area). Major flooding of the plant site is unlikely due to the

topography of the site which includes excellent drainage with natural streams to the north and

south significantly lower in elevation than the RFP buildings. Insufficient information exists to

estimate the amount of water which enters the plant site boundaries as run-on each year (ASI,

1991g). A number of alternatives were investigated in another Zero-Offsite Water-Discharge

study (ASI, 1991h) for providing upstream surface water runoff diversion and bypasses of the

RFP site

The primary affected ground water lies in the Rocky Flats Alluvium, as well as the Arapahoe

Formation which has its main recharge area to the west of the RFP site. Together these form

the "uppermost aquifer", which is an unconfined system (EG&G, 1990). Some recharge also

occurs along stream beds to the north and south of the plant. A deeper aquifer, the Laramie and

Fox Hills, is not hydraulically connected to the Arapahoe Formation, and its recharge area is in

the west buffer zone of the RFP. The surface and ground water systems at RFP are interactive.

Surface water in streams, ditches, and ponds recharges the alluvium, and ground water is

discharged to the surface from the Rocky Flats Alluvium at various sites (EG&G, 1990). No

Study of Water
Resource Management
Zero-Offsite Water-Discharge Study

FINAL Date: May 28, 1991

Revision: 0

information is available yet on the amounts involved in this interaction, although the ground

water monitoring program is designed to help quantify this (EG&G, 1990).

2.2 SOURCES OF POTENTIAL WATER-RELATED CONTAMINATION FROM THE RFP

This section describes qualitatively the major documented sources of contamination from RFP

sources to the surface and ground-water systems of the region. Each of the areas discussed

below have been the subject of years of research and engineering effort by many investigators.

The purpose of this brief review is not to attempt to review or replicate these prior studies here,

but simply to identify potential sources of water-borne contamination at or near RFP. The

reduction of water discharges from these sources is used as an indicator of the effect of various

combinations of individual task recommendations on the goals of the Zero-Offsite Water-

Discharge Study, as explained in Chapters 3 and 4.

2.2.1 Industrial Process Water and Wastewater

The industrial process water distribution system may contribute ground water to the Rocky Flats

Alluvium which can become contaminated in the soil and provide a conduit for contaminant

transport from the RFP. Leakage from the process wastewater collection and treatment loop is

a potential source of contamination in those locations where the process wastewater collection

system is underground. Another source is potential improper connections of process wastewater

to sanitary wastewater treatment system. Industrial wastewater is treated and recycled and/or

evaporated presently, so treated industrial effluent does not constitute an apparent source of

contamination other than as described above.

Study of Water Resource Management Zero-Offsite Water-Discharge Study

FINAL Date: May 28, 1991

Revision: 0

2.2.2 Sanitary Waste Streams

Treated sanitary effluent currently averages about 74 million gallons per year (ASI, 1991c) which is released from the sewage treatment plant (STP). Sources of contamination other than the STP effluent include infiltration/inflow and exfiltration (I/I&E) from the sanitary sewer collection system. Recycling STP treated effluent is the subject of Tasks 11 and 13 (ASI, 1991c), and the phenomenon of I/I&E is discussed in Task 1 (ASI, 1990b). Although some I/I&E does occur, the results of Task 1 indicated that at the time of the study it was not cost-effective to correct this problem, in accordance with EPA guidance on the issue.

2.2.3 Surface Water Runoff

Runoff caused by precipitation which falls on the surface area of the RFP can be contaminated due to the previous deposition of airborne contamination from the RFP. Runoff quality measurements performed as part of other Zero-Offsite Water-Discharge tasks indicate that several quality parameters (including radionuclides) exhibit values which exceed stream standards. Stream standards for the Big Dry Creek drainage downstream of the RFP set by the Colorado Department of Health (CDH) (WWE, 1991) are extremely stringent. For example, stream standards for Woman Creek and its tributaries upstream from Standley Lake and for Walnut Creek and its tributaries upstream from Great Western Reservoir classify those waters as Domestic Water Supply, with numeric standards following drinking-water standards except for radionuclides and some trace metals, which are much more stringent (ASI, 1990c). As a result, any runoff from the RFP may be considered a potential contaminant source.

2.2.4 Surface Water Runoff from Disposal Sites and Individual Hazardous Substance Sites (IHSS)s

Surface runoff from contaminated areas in the RFP area, including officially designated IHSSs, may be a source of surface-water and, potentially, ground-water contamination.

2.2.5 Subsurface Leaching from Disposal Sites and IHSSs

Leaching from the present landfill area into the Landfill Pond is estimated to be about 1.7 million gallons per year (ASI, 1990e). This leachate has been found to contain certain radioactive and other contaminants which have exceeded the RFP proposed standards on a routine basis (ASI, 1990e). Ground water leaching from IHSSs such as 881 Hillside is also a potential source of contamination (for more detail see DOE, 1990a).

3.0 REVIEW OF INTERRELATIONSHIPS OF OTHER ZERO-OFFSITE WATER-DISCHARGE STUDIES WITH THE WATER RESOURCES MANAGEMENT

PROGRAM

The next step of the approach to this study is to review and integrate the information developed

in other tasks of the Zero-Offsite Water-Discharge Study, as well as other efforts, so as to

develop a structure for current and future use of this information in the overall decision-making

process regarding water-resources management. This section describes the structure used to

report the information from each task relevant to the overall water-resources management effort,

the actual data extracted from the studies available at this time, and a description of the major

interrelationships among the 30 tasks of the Zero-Offsite Water-Discharge Study and other water

management studies at RFP.

3.1 INFORMATION REPORTING STRUCTURE

The work of each of the tasks of the Zero-Offsite Water-Discharge Study was scoped to address

a specific issue regarding basic data or required action to achieve the goals of the Study (ASI,

1990a). In spite of an overall agreement on general format between tasks, it is not easy to

assimilate and compare the information presented in each of the task-level reports for decision-

making purposes. Searching for combinations of alternative courses of action described in the

individual reports, keeping track of assumptions and objectives, and estimating the cumulative

effect of these individual actions can be facilitated by the development of a structured data

reporting process such as is presented in this section. No claim is made that this structure is all-

inclusive or fool-proof. An attempt was made to balance the need for detailed information by

the decision-support system presented in a later section with the reality of the data and actions

which are fraught with uncertainty, and which are dependent upon a large set of externalities over

which the water resources planners in the case of the RFP have little or no control. The reader

Study of Water Resource Management Zero-Offsite Water-Discharge Study

13

FINAL Date: May 28, 1991

is encouraged to refer to the subordinate task reports themselves for more detail on any area of

particular interest.

Eight key items were judged to adequately depict the character and results of each subordinate

task, as described below. In addition, it was necessary to analyze consequences of the task

recommendations over time, that is, immediate actions (FY91/92), short-term actions (over the

next five years or so), and longer term actions. Following is a description of the reporting

dimensions found in the series of tables presented in Section 3.3.

Item 1. Data vs. Action.

Subordinate tasks were classified as "Data" if they were performed primarily to

develop necessary data and information for the Zero-Offsite Water-Discharge

Study, but they do not recommend any particular action. "Action" was specified

if a task was primarily intended to result in a tangible improvement in the zero-

discharge goals through some recommendation for action. Goals and objectives

are defined by the user of the Zero-Offsite Water-Discharge model (described in

Chapter 4) which uses the information reported in the tables found in Section 3.3.

Note that the classification may change in time (immediate, short-term, long-term).

Item 2. Technical vs. Political/Regulatory.

"Technical" was used if the information developed in the task was totally driven

by some scientific rationale for the collection of data or development of

information. "Political/Regulatory" was entered when the driving force for the

task resulted from an evaluation of a political or regulatory action, and/or when

14

results were dictated by such actions.

Study of Water
Resource Management
Zero-Offsite Water-Discharge Study

FINAL Date: May 28, 1991

Paulaian

Item 3. System Impact.

These entries describe the expected impact of the task's recommendation(s) on the aspects of the water system specified. The "Delta MGY" entry is the expected change from the base in million gallons per year. The "base case" is normally defined in each task. "Conf fact (%)" is a subjective confidence factor ranging from 0 to 100 percent which is attached to the impact estimate. The confidence factor is used by the system to compute a cumulative confidence level for the efficacy of a particular plan made up of several individual task action recommendations. As can be seen in Appendix F, the total change in water conveyed off-site from the RFP is further broken down into point-source discharges, surface water runoff, ground water, and so on.

Item 4. Financial Impact

Any comprehensive water management plan will need to be subjected to economic or financial analysis to assess its feasibility. The total expected cost of the task recommendation(s), including present worth of capital and OM&R costs, where estimated, were entered from the information given in the task reports. If the task did not recommend a direct structural improvement but recommendations could impact costs of related plan improvements (such as recommendations of other tasks), a cross-reference to impacted structural features and cost implications were indicated where possible.

Item 5. Environmental Impact

At this time, it is not possible to perform a full environmental analysis of the actions recommended in each of the tasks. This is more appropriately done in a formal environmental document such as the upcoming Site-Wide Environmental Impact Statement. It is important, however, to indicate in qualitative terms the overall environmental impact of the task's recommended action(s). A simple

ranking scheme between 0 to 10 was used, where 0 indicates no discernible impact whereas a value of 10 indicates severe environmental impact. This factor may also be used as a "screening tool" to identify areas which may be impacted and the required EIS documentation that may result.

Item 6. Input from Other Tasks

This indicator was used to enumerate those other subordinate tasks which provide important input to this task, or which are impacted by the results of the present task.

Item 7. Input from Water Resource Plans

This refers to the recent draft Surface Water Management Plan (WWE, 1991) and the Groundwater Protection and Monitoring Program Plan (EG&G, 1990). Where possible, direct references to other reports were made.

Item 8. Input from Monitoring

A code was used to identify a "Monitoring Group" with responsibility for monitoring data or actions which would affect the task. Codes for these monitoring groups are shown in Table 3.

Table 3

Monitoring Groups

Group Code	Description
DOE	U.S. Department of Energy
EMAD	Environmental Monitoring and Assessment Division, EG&G
CWAD	Clean Water Act Division, EG&G
ASI	Advanced Sciences, Inc.
CDH	Colorado Department of Health
USGS	U.S. Geological Survey
EPA	U.S. Environmental Protection Agency
FE	Facilities Engineering, EG&G
SCS	U.S. Soil Conservation Service
Broom	City of Broomfield

Table 4

ZOWDS Related Task Groups

Task	Description		
	GROUP I WASTEWATER RECYCLE		
11/13	Treated Sewage/Process Wastewater Recycle Study		
10	Sewage Treatment Plant Evaluation Study		
19	Study of Process Waste Minimization		
20	Raw, Domestic and Process Water Pipeline Leak Study		
12	Reverse Osmosis and Mechanical Evaporation Study		
18	Drain Study		
1	Sanitary Sewer Infiltration/Inflow and Exfiltration Study		
	GROUP II STORM WATER		
9	Design Recurrence Intervals Study		
4	Water-Yield and Water-Quality Study of Walnut Creek and Woman Creek Watersheds		
16	Water-Yield and Water-Quality Study of Other Sources Tributary to Standley Lake and Great Western Reservoir		
6	Storm Runoff Quantity for Design Events Study		
24	Bypass Upstream Flows Around Rocky Flats Plant Study		
21	Temporary Water Storage Capabilities Study		
15	Surface Water Evaporation Study		
25	Study of Downstream Erosion Potential		
5	Confirmation of Rainfall/Runoff Relationships Study		
2/3	Storm Sewer I/I/E Study and Non-point Source Assessment		

Table 4 (continued)

ZOWDS Related Task Groups

Task	Description
	GROUP III GROUND WATER
7	Solar Pond Interceptor Trench System Ground-Water Management Study
8	Present Landfill Area Ground-Water/Surface Water Collection Study
22	Ground-Water Recharge Study
26	Feasibility of Ground-Water Cutoff and Diversion Study
29	Non-Tributary Ground-Water Study
	GROUP IV WATER MANAGEMENT
23	Study of Water Resource Management
27	Waste Generation Treatment Study
28	Augmentation Plan for Rocky Flats Plant
14	Surface-Water and Ground-Water Rights Study
17	Alternatives to Zero Discharge Study
30	Consolidation and Zero Discharge Plan

4.0 INTEGRATION OF DATABASES AND INFORMATION SYSTEMS

4.1 APPROACH

The Zero-Offsite Water-Discharge decision support system is a process whereby the goals of the

program can be evaluated in terms of the data and actions developed in each of the 30

subordinate tasks, as well as the outside influences of other studies and/or decisions. The key

point is to be able to formulate specific goals for a Zero-Offsite Water-Discharge Program.

The approach was to develop a computerized decision support system which permits the decision-

maker some flexibility in defining goals and which suggests useful combinations of actions to

achieve those goals. The model works with the information presented in Appendix F only. The

decision maker may have access to additional relevant information which he must apply to the

model results. For example, the decision maker may be aware of funding constraints or political

pressures which would affect any plan but which are not explicitly described in the model. There

may be important interactions (such as precedence of actions) between the individual Zero-Offsite

Water-Discharge tasks or between Zero-Offsite Water-Discharge tasks and external activities

which are not represented in the model. The model presents the decision maker with suggestions

on optimal courses of action within a limited information environment. To this the decision

maker must add his understanding of the Zero-Offsite Water-Discharge program and of other

activities at RFP.

The concept is iterative and interactive, leading to a quasi-optimization of the Zero-Offsite Water-

Discharge Plan. An important feature of the decision support system is that it accepts changes,

not just in the goals for the Plan but also in the information base which drives it. A schematic

of the approach is shown in Figure 4, and is described as follows:

Study of Water Resource Management Zero-Offsite Water-Discharge Study

FINAL Date: May 28, 1991

Revision: 0

Goal Setting:

A number of possible definitions of the term "zero-offsite water-discharge" have been

discussed (WWE, 1991; ASI, 1990a). These have ranged from extremely strict (an

absolute ban on any type of discharge of water beyond the RFP boundaries) to relatively

mild (an attempt to prevent as much contamination as technically and economically

feasible from leaving the plant boundaries but permitting "clean" water to leave). The

system begins by requiring the user to define his initial goals.

Information Base Maintenance:

It is expected that the data which are used by the system to evaluate the feasibility of the

defined goals will change often. At this point, the system inquires if changes to the basic

data have occurred in the areas of monitoring information, new or updated information

developed as part of another task, or relevant external information such as actions or data

specified in other water management studies. Updating the information base is not done

by the system; but rather, the system directs the user as to the necessary procedures. For

example, the information presented in Section 3.3 and Appendix F has been stored in a

dBase III+ file for access by the decision-support system (see Appendix E), and

modifications or additions to that file are accomplished using the dBase III+ program.

Information changes to the dBase file can be updated data or even structural changes to

the task descriptions themselves. For example, a new field may need to be added to the

system to incorporate new information not previously catalogued. Appendix D includes

instructions for updating the dBase file.

Consultation:

At this point, the system compares the demands of the goals to the constraints and

opportunities of the information contained in the data base. The system then suggests one

or more courses of action which best achieve the desired goals. An opportunity exists at

this point to go back to an earlier stage in the process to change information or goals.

Study of Water Resource Management Zero-Offsite Water-Discharge Study

FINAL

Date: May 28, 1991

The basic computations carried out by the system are fundamentally simple so as to make the

results intuitively acceptable as much as possible. The process begins with Program COMB,

which searches for all possible combinations of task alternatives and provides a pointer file for

use in the main analytical program, called Zero-Offsite Water-Discharge (ZOWD). ZOWD

assists the decision maker in stating his goals and objectives and then checks each combination

of tasks to see which combination best meets those goals. ZOWD tallies the total changes in

water discharge forecast by each task by simply adding these together, subject to the constraints

of relationships to other tasks to prevent double counting of discharge reductions.

The system is not a replacement for informed judgment; it is simply an aid. The FORTRAN

code listings for programs COMB and ZOWD are found in Appendices A and B. Appendix D

contains information needed to operate these two programs.

4.2 PRELIMINARY RESULTS

A sample run of the ZOWD, Decision Support System computer program is found in Appendix

C. The information base used for this sample consists only of the data found in the dBase file

reproduced in Appendix E. This information corresponds to the data presented in Appendix F

of this report. The ZOWD model was exercised several times with different goal sets. The

results are presented in Table 5.

Given the information available as of this date and the goals stated in Table 5, it appears that the

best course for the Zero-Offsite Water-Discharge Plan is a combination of the recommendations

of Tasks 11/13, Treated Sewage/Process Wastewater Recycle Study (ASI, 1991c) increased

capacity alternative, with the recommendations of Task 21, Temporary Water Storage Capabilities

Study (ASI, 1991g) terminal ponds alternative. It must be emphasized that the decision makers

Study of Water Resource Management Zero-Offsite Water-Discharge Study

23

FINAL Date: May 28, 1991

Table 5
Initial ZOWD Model Results

Goal	ZOWD Recommended Task Actions and F	Results
"Absolute" Zero Discharge	**** Goal Selected is: 1 Absolute Zero-Di	scharge
(Low Cost is	<>< <the best="" combination="" for="" goal<="" of="" tasks="" td="" this=""><td>follows>>>></td></the>	follows>>>>
Secondary Objective)	Actions which SUPPORT the objectives of this	goal are:
	11 0 Process Water Reuse Potential Study 21 1 Temporary Water Storage - Great West	ern
	I. Wastewater Recycle Total change in Offsite Water Discharge: Minimum change with confidence factor: Approximate Total Cost (\$ millions): Average environmental impact code (0-10)	-74.0 MGY -59.2 MGY 1.67 2.00
	II. Storm Water Total change in Offsite Water Discharge: Minimum change with confidence factor: Approximate Total Cost (\$ millions): Average environmental impact code (0-10)	-52.3 MGY -26.2 MGY 91.10 9.00
	Minimum change with confidence factor: Approximate Total Cost (\$ millions):	-126.3 MGY -85.4 MGY 92.77 5.50
	Actions which OPPOSE the objectives of this	
	III. Ground Water Total change in Offsite Water Discharge: Minimum change with confidence factor: Approximate Total Cost (\$ millions): Average environmental impact code (0-10)	3.7 MGY 3.0 MGY .00 .00
	Total All Groups Total change in Offsite Water Discharge: Minimum change with confidence factor: Approximate Total Cost (\$ millions): Average environmental impact code (0-10)	3.7 MGY 3.0 MGY .00

Table 5 (continued)

Initial ZOWD Model Results

Goal	ZOWD Recommended Task Actions and Results
Zero Waste Discharge (Low cost is secondary objective)	Actions which SUPPORT the objectives of this goal are: 11 1 Task 11/13 Selected Alternate, Increase Capac. 21 2 Temporary Water Storage - Terminal Ponds I. Wastewater Recycle Total change in Offsite Water Discharge: -76.2 MGY Minimum change with confidence factor: -61.0 MGY Approximate Total Cost (\$ millions): 1.67 Average environmental impact code (0-10) 2.00 II. Storm Water Total change in Offsite Water Discharge: -80.7 MGY Minimum change with confidence factor: -40.3 MGY Approximate Total Cost (\$ millions): 16.30 Average environmental impact code (0-10) 8.00 Total All Groups Total change in Offsite Water Discharge: -156.9 MGY Minimum change with confidence factor: -101.3 MGY Approximate Total Cost (\$ millions): 17.97 Average environmental impact code (0-10) 5.00 *** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

with responsibilities for the Zero-Offsite Water-Discharge Plan must use their judgement in the acceptance of these results. Different goal sets may result in different recommendations.

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL
Date: May 28, 1991
Revision: 0

5.0 RECOMMENDED WATER-RELATED MONITORING AND REPORTING

SYSTEM

This report has as its primary goal the development of a decision support system which can be

used by decision makers at RFP to assist in the development of a Zero Offsite Water-Discharge

Plan. The control of water discharges from the RFP involves a coordinated effort on the part of

many responsible groups within RFP. Specific actions to achieve this goal will be recommended

in Task 30, Consolidation and Zero-Discharge Plan (ASI, 1990i).

The ZOWD DSS can only be as good as the data it uses. The following points constitute the

recommended monitoring program to be used to maintain the validity and usefulness of the

ZOWD DSS:

• Purpose and Scope. The ZOWD decision support system (DSS) is designed to

provide decision makers at RFP with suggested courses of action given the prior

development of candidate alternative recommendations of the various tasks of the

Zero Offsite Water-Discharge Study. It is a planning tool rather than a real-time

operations tool. The data base contains "bottom line" information only on the

projected effect of each task on annual discharge reductions.

Data Required. The monitoring program to maintain the ZOWD DSS data base

must report discharge changes in MGY per year. This means that raw water

quality and quantity data gathered by various monitoring groups must be analyzed

for its "bottom line" effect on water-discharge reductions prior to entering them

into the ZOWD data base. Discharge reductions (or increases) should be reported

for the following systems: all water systems as a group; wastewater; point-

source discharges; sources affecting the ground water; surface runoff; and,

domestic waste. The ZOWD DSS assumes that information will be available for

Study of Water Resource Management Zero-Offsite Water-Discharge Study

FINAL Date: May 28, 1991

Revision: 0

three time horizons: the present (defined as Fiscal Years 1991 and 1992), the near future (the next five years or so), and the longer term future. Present worth of capital and OM&R costs to carry out task recommendations should be reported and updated as necessary. The overall environmental impact of any recommendation should be estimated and reported as an indicator code. As stated earlier, Appendix F of this report can be used as data capture forms to facilitate data entry into the dBase III+ file.

- Responsible Parties. Because of the specialized nature of the ZOWD DSS and its data bases, it is important that there be a single point of responsibility and authority for reporting monitoring data which is likely to affect the Zero Offsite Water-Discharge Plan. The EG&G group currently responsible for the Zero Offsite Water-Discharge Plan (Plant Engineering, Civil/Environmental Restoration) should be the responsible party for data base maintenance.
- data base should be reviewed annually to make sure that it is still relevant and accurate in view of potentially changing conditions at RFP. In particular, the assumptions which were used by each of the task authors regarding important parameters (RFP population, hydrology, hydraulics, stream standards, etc.) should be reviewed. If these depart significantly from those used during the Zero Offsite Water-Discharge Study, consideration should be given to revising the affected tasks.

6.0 ACKNOWLEDGEMENTS

This report was prepared under the direction of Michael G. Waltermire, P.E., Project Manager, of Advanced Sciences, Inc. Balloffet and Associates, Inc. (B&A) provided major support to ASI for this Task. This draft was prepared by Armando F. Balloffet, P.E. of B&A and was reviewed by Larry Quinn, P.E. of B&A and Dr. Timothy D. Steele, and Dr. James R. Kunkel and Tyler D. Smart, PE of ASI. EG&G and DOE responsive reviewers of this report included:

R.A. Applehans - EG&G (PE/C-ER)

This interim report was prepared and submitted in partial fulfillment of the Zero-Offsite Water-Discharge Study being conducted by ASI on behalf of EG&G Rocky Flats, Inc. EG&G's Project Engineer was R.A. Applehans of EG&G's Plant Engineering, Civil/Environmental Restoration (PE/C-ER).

7.0 BIBLIOGRAPHY

- Advanced Sciences, Inc. (ASI), 1988, Water Management Alternatives for the Rocky Flats Plant, September 2, 1988.
- Advanced Sciences, Inc. (ASI), 1990a, Predecisional Draft Zero-Offsite Water-Discharge Study Scope Evaluation: Prepared for EG&G Rocky Flats, Inc., Project No. 667 Task 16, March 30, 1990 34 p., 2 appendices, 1 plate.
- Advanced Sciences, Inc. (ASI), 1990b, Sanitary Sewer Infiltration/Inflow and Exfiltration Study, Rocky Flats Plant Site, Task 1 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0101, December, 47 p., 9 tables, 24 figures, 5 appendices, A through E.
- Advanced Sciences, Inc. (ASI), 1990c, Non-Point Source Assessment and Storm-Sewer Infiltration/Inflow and Exfiltration Study, Rocky Flats Plant Site, Tasks 2 and 3 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0102 and 208.0103, December, 53 p., 10 tables, 15 figures, 7 appendices, A through G.
- Advanced Sciences, Inc. (ASI), 1990d, Water-Yield and Water-Quality Study of Walnut Creek and Woman Creek Watersheds, Rocky Flats Plant Site, Task 4 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0104, September, 18 p., 6 tables, 2 figures, 5 appendices, A through E.
- Advanced Sciences, Inc. (ASI), 1990e, Draft -- Present Landfill Area Ground-Water/Surface Water Collection Study, Rocky Flats Plant Site, Task 8 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0108, September, 17 p., 2 tables, 4 figures, 1 appendix, A.
- Advanced Sciences, Inc. (ASI), 1990f, Design Recurrence Intervals Study, Rocky Flats Plant Site, Task 9 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0109, August, 17 p., 4 appendices, A through D.
- Advanced Sciences, Inc. (ASI), 1990g, Water-Yield and Water-Quality of Other Sources Tributary to Standley Lake and Great Western Reservoir, Rocky Flats Plant Site, Task 16 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0116, December, 12 p., 4 tables, 1 figure, 2 appendices, A and B.
- Advanced Sciences, Inc. (ASI), 1990h, Draft -- Process Waste Minimization Study, Rocky Flats Plant Site, Task 19 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0119, October, 46 p., 3 tables, 4 figures.

Study of Water Resource Management Zero-Offsite Water-Discharge Study

- Advanced Sciences, Inc. (ASI), 1990i, Draft -- Consolidation and Zero-Discharge Plan, Rocky Flats Plant Site, Task 30 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0130, September 28, 69p.
- Advanced Sciences, Inc. (ASI), 1990j, Draft Geologic Characterization Report for U.S. D.O.E.-Rocky Flats Plant: January 3, 7 sections and Appendices A through G.
- Advanced Sciences, Inc. (ASI), 1991a, Storm-Runoff Quantity for Various Design Events, Rocky Flats Plant Site, Task 6 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0106, January, 40 p., 7 tables, 66 figures, 5 appendices, A through E.
- Advanced Sciences, Inc. (ASI), 1991b, Sanitary Treatment Plant Evaluation Study, Rocky Flats Plant Site, Task 10 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0110, January, 46 p., 6 figures, 3 appendices.
- Advanced Sciences, Inc. (ASI), 1991c, Treated Sewage/Process Wastewater Recycle Study, Rocky Flats Plant Site, Tasks 11 and 13 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0111 and 208.0113, January, 40 p., 14 figures, 3 appendices.
- Advanced Sciences, Inc. (ASI), 1991d, Reverse Osmosis and Mechanical Evaporation Study, Rocky Flats Plant Site, Task 12 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0112, May 12 p.
- Advanced Sciences, Inc. (ASI), 1991e, Preliminary Draft -- Alternatives to Zero Discharge, Rocky Flats Plant Site, Task 17 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0117, March 29, 69 p., 23 tables, 1 figure, 3 appendices.
- Advanced Sciences, Inc. (ASI), 1991f, Raw, Domestic, and Industrial Water Pipeline Leak-Detection Method Study, Rocky Flats Plant Site, Task 20 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0120, March 26, 21 p., 3 tables, 3 figures, 1 appendix, A.
- Advanced Sciences, Inc. (ASI), 1991g, Temporary Water Storage Capabilities Study, Rocky Flats Plant Site, Task 21 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0121, March 19, 120 p., 45 tables, 12 figures, 3 appendices, A through C.

- Advanced Sciences, Inc. (ASI), 1991h, Bypass Upstream Flows Around Rocky Flats Plant Study, Rocky Flats Plant Site, Task 24 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0124, January 15, 44 p., 7 tables, 19 figures, 2 appendices, A and B.
- Advanced Sciences, Inc. (ASI), 1991i, Surface-Water and Ground-Water Rights Study, Rocky Flats Plant Site, Task 14 of the Zero-Offsite Water-Discharge Study: Prepared for EG&G Rocky Flats, Inc., Project No. 208.0114, May 21, 58 p., 18 tables, 8 figures, 1 Plate, 1 appendix, A.
- Advanced Sciences, Inc. (ASI), 1991j, Feasibility of Ground-Water Cutoff/Diversion Study. Project No. 208.0126, May 21, 1991.
- Advanced Sciences, Inc. (ASI), 1991k, Non-Tributary Ground-Water Study, Project No. 208.0129, May 21, 1991.
- Advanced Sciences, Inc. (ASI), 1991l, Draft -- Confirmation of Rainfall/Runoff Relationships. Project No. 208.0105, May 21, 1991.
- Advanced Sciences, Inc. (ASI), 1991m, Draft -- Study of Downstream Erosion Potential. Project No. 208.0125, May 21, 1991.
- EG&G Rocky Flats, Inc. (EG&G), 1990, Groundwater Protection and Monitoring Program Plan for Rocky Flats Plant: In Compliance with DOE Order 5400.1, October 22, 9 Chapters, 20 figures, 20 tables.
- EG&G Rocky Flats, Inc. (EG&G), 1991, Rocky Flats Environmental Restoration Update: Prepared by EG&G Rocky Flats, Inc. Community Relations, January, 1991.
- U.S. Department of Energy (DOE), 1980, Final Environmental Impact Statement, Rocky Flats Plant, Golden, Jefferson County, Colorado: Final Statement to ERDA 1545-D.
- U.S. Department of Energy (DOE), 1989, Assessment of Environmental Conditions at the Rocky Flats Plant: Special Assignment Environmental Team (Tiger Team), Golden, CO, August, 10 sections and Appendices A through K.
- U.S. Department of Energy (DOE), 1990a, Environmental Assessment for 881 Hillside (High Priority Sites) Interim Remedial Action, Rocky Flats Plant: DOE/EA-0413, January.
- U.S. Department of Energy (DOE), 1990b, Corrective Action Plan in Response to the August 1989 Assessment of Environmental Conditions at the Rocky Flats Plant: Rocky Flats Office, July 20.

- U.S. Department of Energy and State of Colorado (DOE and State of Colorado), 1989, Agreement in Principle Between the United States Department of Energy and the State of Colorado: June 28, 25 p.
- U.S. Environmental Protection Agency (EPA) and State of Colorado, 1989, Federal Facilities Agreement and Consent Order in the Matter of U.S. Department of Energy Rocky Flats (Colorado) Site: December 8, 98 p., 5 attachments (Attachment 3 reserved for work plans).
- Wright Water Engineers (WWE), 1991, Draft -- Surface Water Management Plan, Rocky Flats Plant: Prepared for EG&G Rocky Flats, Inc., March, 8 Chapters, 4 appendices.

GENERAL APPROACH

CY 1989 WATER BALANCE ROCKY FLATS PLANT

TASK INTERRELATIONSHIPS DIAGRAM

DECISION SUPPORT SYSTEM APPROACH

. ·

APPENDIX A

COMB Program Code

```
C
С
         PROGRAM - COMB
С
        CREATES FILE OF TASK/ALTERNATIVE COMBINATIONS
С
         TO BE USED BY PROGRAM ZOWD
С
         ZERO-OFFSITE WATER-DISCHARGE PLAN AT ROCKY FLATS.
С
         PROGRAMMER: A.F.BALLOFFET, BALLOFFET AND ASSOCIATES, INC.
С
         UNDER CONTRACT TO ADVANCED SCIENCES, INCORPORATED
С
         TASK 23 STUDY OF WATER RESOURCE MANAGEMENT
С
         APRIL 18, 1991
С
      INTEGER INF (10,2), NALT (2,300), SYSTAF (10),
     3 LOC(40), LOCT(40), MOC(40), NINF(3,40)
      REAL MGIN (2,7)
      CHARACTER*1 YN, REL(10)
      CHARACTER*2 TEM2A, TEM2B
      CHARACTER*4 TEM4
      CHARACTER*5 MON (5)
      CHARACTER*12
                      COMBFIL, ZOWDIN
      CHARACTER*50 DESIN, OUTFIL, INFILE
      DATA COMBFIL/'ZOWDCOMB.DAT'/, ZOWDIN/'ZOWDIN2.DAT '/
C
С
      *** ARRAY DESCRIPTIONS ***
С
C
     NALT(I,K)
                 "ID sequence for each Task/Alternative"
С
                 I = 1 --> Task Number [Usually 1 to 30]
С
                   = 2 --> Alternative Number for Task [0 to 99]
С
                 K = 1 to 100 Task/Alternative sequence number
С
     SYSTAF (K)
                 "Temporary array to read systems affected
С
                 by influencing task from dBase file"
С
                 K = 1 TO 10
С
     MGIN(L,M)
                 "Temporary array to read from dBase file the
С
                  MGY and CONF (L = 1 and 2) for each of M
С
                  systems."
С
     LOC(K)
                       "Starting sequence Number for Task K (see NALT)"
С
     LOCT(K)
                 "Sequence number for each alternative within
С
                   Task K." (changes in a DO-loop during
С
                   evaluation of each combination of Task/alternatives"
С
       MOC(K)
                       "Number of Alternatives for Task K"
C
C
      *** MAIN I/O ROUTINE ***
С
```

```
DO 5 I=1,2
      DO 5 J=1,300
5
      NALT(I, J) = 0
      NT=0
      NTS = 0
      NP1 = -1
      NP2 = -1
      WRITE (*, 12)
12
      FORMAT (///, 20X, 'ZERO-OFFSITE WATER-DISCHARGE PLAN', //,
     1
                  20X,'
                             Decision Support System',///,
     2
                  20X,'
                                  PROGRAM COMB',//)
55
      WRITE (*, 60)
60
      FORMAT(5X,'Enter COMBIN. OUTPUT FILE pathname (ZOWDCOMB.DAT): '\)
      READ (*, 62) OUTFIL
62
      FORMAT(A)
      IF((INDEX(OUTFIL,'')-1).EQ.0) OUTFIL=COMBFIL
      OPEN (UNIT=10, ERR=70, FILE=OUTFIL, MODE='WRITE', STATUS='UNKNOWN')
      GO TO 90
70
      WRITE (*, 72) OUTFIL
72
      FORMAT(5X, 'Unable to open file ', A)
      GO TO 55
90
      WRITE (*, 100)
100
      FORMAT(5X,'Enter INPUT FILE pathname (ZOWDIN2.DAT): ',\)
      READ (*, 62) INFILE
      IF ((INDEX(INFILE, ' ')-1).EQ.0) INFILE=ZOWDIN
      OPEN (UNIT=11, ERR=105, FILE=INFILE, MODE='READ', STATUS='OLD')
      GO TO 110
105
      WRITE (*, 72) INFILE
      GO TO 90
110
      WRITE (*, 115) INFILE, OUTFIL
115
      FORMAT(/5X, 'You have specified input file (from dBase): ',
     1 A12,/17X, and output (Combinations) file: ',A12,//
     2 5X, 'Do you wish to change these? (Y/N): '\)
      READ (*, '(A)') YN
      IF (YN.EQ.'Y'.OR.YN.EQ.'y') GO TO 55
C
С
               READ IN DATA FOR ALL TASK/ALTERNATIVES
С
               DATA COMES FROM dBASE FILE
С
120
      READ (11, 300, END=350) N1, N2, DESIN, TEM4, TEM2A, TEM2B,
     1 ((MGIN(J, I), J=1, 2), I=1, 7), FINAN, IMPENV,
     2 ((INF(K,L),L=1,2),SYSTAF(K),REL(K),K=1,10), (MON(M),M=1,5)
300
      FORMAT(I3, I2, A50, A4, 2A2, 7 (F7.1, F4.0), F6.0, I3,
     1 10(I3, I2, I1, A1), 5A5)
      IF (N1.LT.NP1) GO TO 350
```

```
IF (N1.EQ.NP1.AND.N2.EQ.NP2) GO TO 120
      NT = NT + 1
      NALT(1,NT) = N1
      NALT(2,NT) = N2
      NP1 = N1
      NP2 = N2
      IF (NTS.EQ.0) GO TO 301
      IF (N1.EQ.NALT (1,NT-1)) GO TO 120
301
      NTS = NTS + 1
      LOC(NTS) = NT
      GO TO 120
С
C
         DETERMINE POSSIBLE COMBINATIONS
С
         OF TASK/ALTERNATIVES
C
350
      DO 351 I = 2,NTS
351
      MOC(I-1) = LOC(I) - LOC(I-1)
      MOC(NTS) = NT - LOC(NTS) + 1
      NOC = 1
      DO 352 I = 1,NTS
      IF (NOC.LT.1000) GO TO 352
      KA=INDEX(INFILE,'')-1
      WRITE (*, 3511) INFILE (1:KA)
3511 FORMAT(/5X,'*** Warning; more than 1000 combinations found.'/,
     1 7X, 'Check that file ',A,' is sorted properly.'//,
     27X, 'Do you wish to continue with first 1000 combinations? (Y/N)'\)
      READ (*, '(A)') YN
      IF (YN.EQ.'Y'.OR.YN.EQ.'y') GO TO 3521
      STOP
352
      NOC = NOC * MOC(I)
3521 IF (IP.EQ.2) WRITE (10, 353) NOC
      WRITE (*, 353) NOC
353
      FORMAT(/5X,'There are', I10,' possible alternative combinations.')
      PAUSE
      WRITE (*, 3562)
3562 FORMAT(//,10x,'*** PROCESSING BEGINS ***'/)
      NLOCS=0
      WRITE (10, 354) NOC, NTS
354
      FORMAT (215)
      DO 8000 I1=1,NTS
      DO 7990 J1=1, MOC(I1)
      LOCT(I1) = LOC(I1) + J1 - 1
      K2=I1+1
      IF (K2.LE.NTS) GO TO 3400
      IF (NTS.GT.1)GO TO 7990
```

FINAL
Date: May 28, 1991
Revision: 0

```
NLOCS=NLOCS+1
       WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
       WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
6100 FORMAT (5X, 'Comb:', I4, 'LOCT=', 15I4, /(20X, 15I4))
7050 FORMAT(6014)
       IF (NLOCS.EQ.NOC) STOP
       GO TO 7990
3400 DO 7980 I2=K2,NTS
       DO 7970 J2=1, MOC(I2)
       LOCT(I2) = LOC(I2) + J2 - 1
       K3=I2+1
      IF (K3.LE.NTS) GO TO 3410
       IF (NTS.GT.2) GO TO 7970
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7970
3410 DO 7960 I3=K3,NTS
      DO 7950 J3=1, MOC(I3)
      LOCT(I3) = LOC(I3) + J3 - 1
      K4 = I3 + 1
       IF (K4.LE.NTS) GO TO 3420
       IF (NTS.GT.3) GO TO 7950
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7950
3420 DO 7940 I4=K4,NTS
      DO 7930 J4=1, MOC(I4)
      LOCT(I4) = LOC(I4) + J4 - 1
      K5 = I4 + 1
      IF (K5.LE.NTS) GO TO 3430
      IF (NTS.GT.4) GO TO 7930
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7930
3430 DO 7920 I5=K5,NTS
      DO 7910 J5=1, MOC(I5)
      LOCT(I5) = LOC(I5) + J5 - 1
      K6=I5+1
      IF (K6.LE.NTS) GO TO 3440
```

IF (NTS.GT.5) GO TO 7910 NLOCS=NLOCS+1 WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS) WRITE (10, 7050) (LOCT (LK), LK=1, NTS) IF (NLOCS.EQ.NOC) STOP GO TO 7910 3440 DO 7900 I6=K6,NTS DO 7890 J6=1, MOC(I6) LOCT(16) = LOC(16) + J6 - 1K7=I6+1 IF (K7.LE.NTS) GO TO 3450 IF (NTS.GT.6) GO TO 7890 NLOCS=NLOCS+1 WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS) WRITE (10,7050) (LOCT (LK), LK=1, NTS) IF (NLOCS.EQ.NOC) STOP GO TO 7890 3450 DO 7880 I7=K7,NTS DO 7870 J7=1, MOC(I7) LOCT(I7) = LOC(I7) + J7 - 1K8 = I7 + 1IF (K8.LE.NTS) GO TO 3460 IF (NTS.GT.7) GO TO 7870 NLOCS=NLOCS+1 WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS) WRITE (10, 7050) (LOCT (LK), LK=1, NTS) IF (NLOCS.EQ.NOC) STOP GO TO 7870 3460 DO 7860 18=K8,NTS DO 7850 J8=1, MOC(I8) LOCT(I8) = LOC(I8) + J8 - 1K9 = I8 + 1IF (K9.LE.NTS) GO TO 3470 IF (NTS.GT.8) GO TO 7850 NLOCS=NLOCS+1 WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS) WRITE (10, 7050) (LOCT (LK), LK=1, NTS) IF (NLOCS.EQ.NOC) STOP GO TO 7850 3470 DO 7840 19=K9,NTS DO 7830 J9=1, MOC(I9) LOCT(19) = LOC(19) + J9 - 1K10=I9+1 IF (K10.LE.NTS) GO TO 3480 IF (NTS.GT.9) GO TO 7830

```
NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7830
3480 DO 7820 I10=K10,NTS
      DO 7810 J10=1, MOC (I10)
      LOCT (I10) = LOC (I10) + J10-1
      K11=I10+1
       IF (K11.LE.NTS) GO TO 3490
       IF (NTS.GT.10) GO TO 7810
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7810
3490 DO 7800 I11=K11,NTS
      DO 7790 J11=1, MOC (I11)
      LOCT (I11) = LOC (I11) +J11-1
      K12=I11+1
      IF (K12.LE.NTS) GO TO 3500
      IF (NTS.GT.11) GO TO 7790
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7790
3500 DO 7780 I12=K12,NTS
      DO 7770 J12=1, MOC(I12)
      LOCT (I12) = LOC (I12) + J12-1
      K13=I12+1
      IF (K13.LE.NTS) GO TO 3510
      IF (NTS.GT.12) GO TO 7770
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7770
3510
      DO 7760 I13=K13,NTS
      DO 7750 J13=1, MOC(I13)
      LOCT(I13) = LOC(I13) + J13 - 1
      K14=I13+1
      IF (K14.LE.NTS) GO TO 3520
      IF (NTS.GT.13) GO TO 7750
      NLOCS=NLOCS+1
```

```
WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7750
3520 DO 7740 I14=K14,NTS
      DO 7730 J14=1, MOC (I14)
      LOCT(I14) = LOC(I14) + J14 - 1
      K15=I14+1
      IF (K15.LE.NTS) GO TO 3530
      IF (NTS.GT.14) GO TO 7730
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7730
3530 DO 7720 I15=K15,NTS
      DO 7710 J15=1, MOC (I15)
      LOCT(I15) = LOC(I15) + J15 - 1
      K16=I15+1
      IF (K16.LE.NTS) GO TO 3540
      IF (NTS.GT.15) GO TO 7710
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7710
3540 DO 7700 I16=K16,NTS
      DO 7690 J16=1, MOC (I16)
      LOCT (I16) = LOC (I16) +J16-1
      K17=I16+1
      IF (K17.LE.NTS) GO TO 3550
      IF (NTS.GT.16) GO TO 7690
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7690
3550 DO 7680 I17=K17,NTS
      DO 7670 J17=1, MOC (I17)
      LOCT (I17) = LOC(I17) + J17 - 1
      K18=I17+1
      IF (K18.LE.NTS) GO TO 3560
      IF (NTS.GT.17) GO TO 7670
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
```

```
WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7670
3560
      DO 7660 I18=K18,NTS
      DO 7650 J18=1, MOC (I18)
      LOCT(I18) = LOC(I18) + J18 - 1
      K19=I18+1
      IF (K19.LE.NTS) GO TO 3570
      IF (NTS.GT.18) GO TO 7650
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7650
3570 DO 7640 I19=K19,NTS
      DO 7630 J19=1, MOC(I19)
      LOCT (I19) = LOC (I19) + J19-1
      K20=I19+1
      IF (K20.LE.NTS) GO TO 3580
      IF (NTS.GT.19) GO TO 7630
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 7630
3580
      120 = K20-1
      120 = 120 + 1
3581
      IF (I20.GT.NTS) GO TO 7630
      J20 = 0
3582 \quad J20 = J20 + 1
      IF (J20.GT.MOC(I20)) GO TO 3581
      LOCT(I20) = LOC(I20) + J20 - 1
      K21=I20+1
      IF (K21.LE.NTS) GO TO 3590
      IF (NTS.GT.20) GO TO 3582
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 3582
3590 I21 = K21-1
3591 \quad I21 = I21 + 1
      IF (I21.GT.NTS) GO TO 3582
      J21 = 0
3592 \quad J21 = J21 + 1
```

```
IF (J21.GT.MOC(I21)) GO TO 3591
       LOCT (I21) =LOC (I21) +J21-1
       K22=I21+1
       IF (K22.LE.NTS) GO TO 3600
       IF (NTS.GT.21) GO TO 3592
       NLOCS=NLOCS+1
       WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
       WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
              IF (NLOCS.EQ.NOC) STOP
       GO TO 3592
3600
      122 = K22-1
3601
       I22 = I22 + 1
       IF (122.GT.NTS) GO TO 3592
       J22 = 0
3602
       J22 = J22 + 1
       IF (J22.GT.MOC(I22)) GO TO 3601
       LOCT(I22) = LOC(I22) + J22 - 1
       K23=I22+1
       IF (K23.LE.NTS) GO TO 3610
       IF (NTS.GT.22) GO TO 3602
       NLOCS=NLOCS+1
       WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
       GO TO 3602
3610 \quad I23 = K23-1
3611 \quad I23 = I23 + 1
       IF(I23.GT.NTS) GO TO 3602
       J23 = 0
3612 \quad J23 = J23 + 1
       IF (J23.GT.MOC(I23)) GO TO 3611
       LOCT(I23) = LOC(I23) + J23 - 1
      K24=I23+1
       IF (K24.LE.NTS) GO TO 3620
      IF (NTS.GT.23) GO TO 3612
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 3612
3620 \quad I24 = K24-1
3621 \quad I24 = I24 + 1
      IF (I24.GT.NTS) GO TO 3612
      J24 = 0
3622 \quad J24 = J24 + 1
```

```
IF (J24.GT.MOC(I24)) GO TO 3621
      LOCT (124) = LOC(124) + J24 - 1
      K25=I24+1
       IF (K25.LE.NTS) GO TO 3630
       IF (NTS.GT.24) GO TO 3622
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 3622
3630 \quad I25 = K25-1
3631 \quad I25 = I25 + 1
      IF (125.GT.NTS) GO TO 3622
      J25 = 0
3632
      J25 = J25 + 1
      IF (J25.GT.MOC(I25)) GO TO 3631
      LOCT(I25) = LOC(I25) + J25 - 1
      K26=I25+1
      IF (K26.LE.NTS) GO TO 3640
      IF (NTS.GT.25) GO TO 3632
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 3632
3640
      126 = K26-1
3641 \quad I26 = I26 + 1
      IF (126.GT.NTS) GO TO 3632
      J26 = 0
3642 \quad J26 = J26 + 1
      IF (J26.GT.MOC(126)) GO TO 3641
      LOCT(126) = LOC(126) + J26 - 1
      K27=I26+1
      IF (K27.LE.NTS) GO TO 3650
      IF (NTS.GT.26) GO TO 3642
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 3642
3650 	 I27 = K27-1
3651 \quad I27 = I27 + 1
      IF (127.GT.NTS) GO TO 3642
      J27 = 0
3652 \quad J27 = J27 + 1
```

FINAL Date: May 28, 1991 Revision: 0

```
IF (J27.GT.MOC(I27)) GO TO 3651
      LOCT (127) =LOC (127) +J27-1
      K28=I27+1
      IF (K28.LE.NTS) GO TO 3660
      IF (NTS.GT.27) GO TO 3652
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 3652
3660 I28 = K28-1
3661
      128 = 128 + 1
      IF (128.GT.NTS) GO TO 3652
      J28 = 0
3662
      J28 = J28 + 1
      IF (J28.GT.MOC(128)) GO TO 3661
      LOCT(I28) = LOC(I28) + J28 - 1
      K29=I28+1
      IF (K29.LE.NTS) GO TO 3670
      IF (NTS.GT.28) GO TO 3662
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 3662
3670
      129 = K29-1
3671 \quad I29 = I29 + 1
      IF (129.GT.NTS) GO TO 3662
      J29 = 0
3672 \quad J29 = J29 + 1
      IF (J29.GT.MOC(I29)) GO TO 3671
      LOCT (I29) = LOC (I29) +J29-1
      K30=I29+1
      IF (K30.LE.NTS) GO TO 3680
      IF (NTS.GT.29) GO TO 3672
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
             IF (NLOCS.EQ.NOC) STOP
      GO TO 3672
3680
      I30 = K30-1
3681 \quad I30 = I30 + 1
      IF (I30.GT.NTS) GO TO 3672
      J30 = 0
3682
      J30 = J30 + 1
```

```
IF (J30.GT.MOC(I30)) GO TO 3681
      LOCT(I30) = LOC(I30) + J30 - 1
      K31=I30+1
      IF (K31.LE.NTS) GO TO 3690
      IF (NTS.GT.30) GO TO 3682
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
            IF (NLOCS.EQ.NOC) STOP
      GO TO 3682
3690
      I31 = K31-1
3691
      I31 = I31 + 1
      IF (I31.GT.NTS) GO TO 3682
      J31 = 0
3692
      J31 = J31 + 1
      IF (J31.GT.MOC(I31)) GO TO 3691
      LOCT(I31) = LOC(I31) + J31 - 1
      NLOCS=NLOCS+1
      WRITE (*, 6100) NLOCS, (LOCT (LK), LK=1, NTS)
      WRITE (10, 7050) (LOCT (LK), LK=1, NTS)
            IF (NLOCS.EQ.NOC) STOP
      GO TO 3692
7630
     CONTINUE
7640 CONTINUE
7650 CONTINUE
7660 CONTINUE
7670 CONTINUE
7680 CONTINUE
7690 CONTINUE
7700 CONTINUE
7710 CONTINUE
7720 CONTINUE
7730 CONTINUE
7740 CONTINUE
7750 CONTINUE
7760 CONTINUE
7770 CONTINUE
7780 CONTINUE
7790 CONTINUE
7800 CONTINUE
7810 CONTINUE
7820 CONTINUE
7830 CONTINUE
7840 CONTINUE
7850 CONTINUE
```

7860	CONTINUE
7870	CONTINUE
7880	CONTINUE
7890	CONTINUE
7900	CONTINUE
7910	CONTINUE
7920	CONTINUE
7930	CONTINUE
7940	CONTINUE
7950	CONTINUE
7960	CONTINUE
7970	CONTINUE
7980	CONTINUE
7990	CONTINUE
8000	CONTINUE
	STOP
	END

.

APPENDIX B

ZOWD Program Code

```
С
С
         DECISION SUPPORT PROGRAM - ZOWD
C
         TO SUPPORT DECISION-MAKING FOR THE
C
         ZERO-OFFSITE WATER-DISCHARGE PLAN AT ROCKY FLATS.
C
         PROGRAMMER: A.F.BALLOFFET, BALLOFFET AND ASSOCIATES, INC.
C
         UNDER CONTRACT TO ADVANCED SCIENCES, INCORPORATED
С
         TASK 23 STUDY OF WATER RESOURCE MANAGEMENT
С
         FEBRUARY 21, 1991
С
         REV. 1, MARCH 24, 1991
С
         REV. 2, APRIL 18, 1991
C
      INTEGER TYPE (3,2,100), IMPACT (3,100), INFBY (3,10,4,100),
     1 KEYS (6,15), INF (10,2), TSKEFF (2,30), NALT (2,100),
     2 OBJECT(2,6), TGROUP(15,3), KNUM(2,5), SYSTAF(10),
     3 LOC(100), LOCT(100), NINF(3,100), KNUMO(2,5), TSKEFO(2,30),
     4 MOC(100), LOCD(60, 1000)
      REAL MGY (3,7,100), CONF (3,7,100), MGIN (2,7), COST (3,100),
     1 ACCUM(2,5,5), ACCUMO(2,5,5)
      COMMON DELTA, NTS, LOCT
      COMMON INFBY, MGY, CONF, NINF
      CHARACTER*1 X, YN, REL (10)
      CHARACTER*2 TEM2A, TEM2B
      CHARACTER*3 CMON(12), TKEY(3)
      CHARACTER*4 TIM(3), TEM4
      CHARACTER*5 MONIT (3,5,100), MON (5)
      CHARACTER*12 ZOWDIN
      CHARACTER*15 CAT(7)
      CHARACTER*23 GROUP (5)
      CHARACTER*25 GOALS(15)
      CHARACTER*50 DESC(100), DESIN, OUTFIL, INFILE
      DATA ZOWDIN/'ZOWDIN2.DAT '/
      DATA GOALS/ 'Absolute Zero-Discharge
     1
                    'Zero Waste Discharge
     2
                    'BAT Treated Waste OK
     3
                   'No point source discharge',
     4
                   'No ground water discharge',
     5
                    'No storm water discharge ',
                 9*1
     DATA TYPE, IMPACT/900*0/
     DATA CMON /'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug',
     1 'Sep','Oct','Nov','Dec'/
```

```
DATA TKEY /'---','MAX','MIN'/,TIM/' NOW','5YR ','LT '/
      DATA CAT/ 'All Water
     1
                  'Tot. Wastewater',
     2
                  'Point Sources ',
     3
                  'Groundwater
     4
                  'Surface Runoff',
     5
                  'Domestic Waste '
                  'Misc. Losses
                                 '/
      DATA TGROUP/ 1,10,11,12,13,18,19,20, 7*0,
     1
                    2,3,4,5,6,9,15,16,21,24,25,4*0,
     2
                    7,8,22,26,29,10*0/
      DATA GROUP/'I.
                        Wastewater Recycle',
     1
                  'II. Storm Water
     2
                  'III. Ground Water
     3
                  'IV. Water Management
                  'Total All Groups
С
C
      *** ARRAY DESCRIPTIONS ***
С
С
      TYPE (I, J, K)
                       "Type of Task", for Time I, Dimension J, Task K.
С
                 I = 1 --> NOW
С
                   = 2 --> WITHIN 5 YEARS
С
                   = 3 --> LONG RANGE
C
                 J = 1 \longrightarrow Data (Type 1) or Action (Type 2)
С
                   = 2 --> Technology (Type 1) or Regulatory (Type 2)
С
                 K = 1 TO 100 (TASK)
С
      IMPACT(I,K)
                      "Environmental Impact" of Task K, at Time I
С
      INFBY(I,L,M,K)
                      " Up to L = 10 Other Tasks influencing" Task K,
С
                          for Time I.
С
                 M = 1 (task number)
С
                   = 2 (task alternative, if any)
C
                   = 3 (primary system affected [Codes 1 to 7])
С
                   = 4 (relationship [Codes A to E, entered in this
С
                      array as 1 to 5])
С
     NINF(I,K)
                 "Number of other tasks influencing Task K at Time I"
C
     KEYS(I,J)
                 "Objective codes for Goal" J, system I
C
                 I = 1 --> All Water
С
                   = 2 --> All Waste Water
С
                   = 3 --> Point Sources
C
                   = 4 --> Ground Water
С
                   = 5 --> Surface Runoff
С
                   = 6 --> Domestic Waste Water
С
                 [Codes are
                                  1 = not applicable
С
                            2 = Maximize reduction
C
                            3 = Minimize reduction]
```

```
С
      INF(L,I)
                 "Temporary array used to read in influencing tasks"
С
      TSKEFF(I, J)
                       "Pointer array to identify Tasks which Support or
С
                   Oppose Desired Goal for combination of tasks
С
                        being analyzed"
С
                 I = 1 --> Tasks which support goal
С
                   = 2 --> Tasks which oppose goal
С
      TSKEFO(I, J)
                       Same as TSKEFF for optimum combination
С
      OBJECT(I, J)
                       "Pointer array to accumulate discrete set of
C
                  up to 6 objectives for goal being analyzed"
C
                 I = 1 --> indicates Maximize (code -1) or
С
                            Minimize (code +1)
С
                   = 2 --> indicates system [codes 1 to 6, see KEYS]
C
                 J = 1 TO 6
С
      TGROUP (J, I)
                       "Array which identifies up to 15 tasks
С
                  for each of 4 groupings"
C
                 J = 1 \text{ to } 15
С
                 I = 1 --> Wastewater Recycle Group
С
                   = 2 --> Storm Water Group
С
                   = 3 --> Ground Water Group
С
                 (All tasks not defined in above groups are
С
                 assigned to Group 4, Water Management, by default)
С
     KNUM(I,J)
                 "Counter array to track how many tasks from
С
                  each Group either support or oppose Goal for
С
                  combination of tasks being analyzed"
С
                 I = 1 --> Tasks which support Goal
С
                   = 2 --> Tasks which oppose Goal
C
                 J = 1 to 4 is Group Number
С
                   = 5 is sum of all Groups
C
     KNUMO(I, J)
                       Same as KNUM for optimum task combination
С
     NALT(I,K)
                 "ID sequence for each Task/Alternative"
С
                 I = 1 --> Task Number [Usually 1 to 30]
С
                   = 2 --> Alternative Number for Task [0 to 99]
C
                 K = 1 to 100 Task/Alternative sequence number
С
     SYSTAF (K)
                 "Temporary array to read systems affected
С
                  by influencing task from dBase file"
С
                 K = 1 \text{ TO } 10
С
     MGY(I,J,K)
                       "Change in water discharging from RFP at time I,
С
                  system J, and for task/alternative K"
С
                       "Confidence factor applied to MGY reported for
     CONF(I, J, K)
C
                  time I, system J, task/alternative K.
С
                  factor is entered as a percent."
С
     MGIN(L,M)
                 "Temporary array to read from dBase file the
С
                  MGY and CONF (L = 1 and 2) for each of M
С
                  systems."
С
     COST(I,K) "Total cost of task/alternative K for time I"
```

```
C
      ACCUM(I,J,K)
                       "Array to accumulate information for a goal for
C
                  combination of tasks being analyzed"
С
                 I = 1 --> Task/alternatives which SUPPORT goal
C
                   = 2 --> Task/alternatives which OPPOSE goal
C
                 J = 1 --> Total MGY change
С
                   = 2 --> "Discounted" MGY change [MGY*CONF]
C
                   = 3 --> Total cost
С
                   = 4 --> Average total environmental impact
C
     ACCUMO(I, J, K)
                       Same as ACCUM for optimum task combination
С
      LOC(K)
                       "Starting sequence Number for Task K (see NALT)"
C
                 "Sequence number for each alternative within
      LOCT(K)
С
                   Task K." (changes in a DO-loop during
С
                   evaluation of each combination of Task/alternatives"
С
       MOC(K)
                       "Number of Alternatives for Task K"
С
С
      *** MAIN I/O ROUTINE ***
С
      ISTART=1
      DO 5 I=1,2
      DO 5 J=1,100
5
      NALT(I,J)=0
      DO 7 I = 1,3
      DO 7 J = 1,10
      DO 7 K = 1,4
      DO 7 L = 1,100
7
      INFBY(I,J,K,L) = 0
      DO 10 I=1,6
      DO 10 J=1,15
10
      KEYS(I,J)=1
      KEYS(1,1)=2
      KEYS(2,2)=2
      KEYS(2,3)=3
      KEYS(3, 4) = 2
      KEYS(4,5)=2
      KEYS(5, 6) = 2
      DO 11 I = 1,3
      DO 11 J = 1,7
      DO 11 K = 1, 100
      CONF (I, J, K) = 0.
11
      MGY(I,J,K) = 0.
С
         READ GOAL DATA (IF FIRST RUN, USE DEFAULT DATA ABOVE)
      MG=6
      NT=0
      NTS = 0
      NP1 = -1
```

Date: May 28, 1991 Revision: 0

FINAL

```
NP2 = -1
      WRITE (*, 12)
12
      FORMAT (///, 20X, 'ZERO-OFFSITE WATER-DISCHARGE PLAN', //,
                             Decision Support System', ///,
      25X, 'Use Default Goal Data? (Mandatory for first run) (Y/N) : '\)
      OPEN (UNIT=13, ERR=30, FILE='ZOWDSYST', MODE='READWRITE',
     1 STATUS='UNKNOWN')
      READ (*, '(A)') YN
      IF (YN.EQ.'Y'.OR.YN.EQ.'y') GO TO 30
      READ (13, 20) MG, GOALS, KEYS
20
      FORMAT(I5,/,15(A25/),15(10I5/))
      REWIND 12
30
      IP=1
      WRITE (*, 50)
50
      FORMAT(5X,'Would you like to save your output on disk? (Y/N) ',\)
      READ (*, '(A)') YN
      IF (YN.NE.'Y'.AND.YN.NE.'y') GO TO 90
55
      WRITE (*, 60)
60
      FORMAT (5X, 'Enter the pathname of your OUTPUT FILE: '\)
      READ (*, 62) OUTFIL
62
      FORMAT(A)
      IF ((INDEX(OUTFIL, ' ')-1).EQ.0) GO TO 90
      OPEN (UNIT=10, ERR=70, FILE=OUTFIL, MODE='WRITE', STATUS='UNKNOWN')
      CALL GETDAT (IYR, IMON, IDAY)
      CALL GETTIM (IHR, IMIN, ISEC, I100TH)
      WRITE (10, 65) IDAY, CMON (IMON), IYR, IHR, IMIN, OUTFIL
65
      FORMAT (5X, 'ZOWD PROGRAM OUTPUT FOR SESSION ON ', I2, 1X, A3, ', ', I4,
         AT ', I2.2,':', I2.2,/,5X,'OUTPUT FILE: ',A,//)
      IP=2
      GO TO 90
70
      WRITE (*, 72) OUTFIL
72
      FORMAT(5X,'Unable to open file ',A)
      GO TO 55
90
      WRITE (*, 100)
100
      FORMAT(5X,'Enter the INPUT FILE pathname (ZOWDIN2.DAT):',\)
      IF (IP.EQ.2) WRITE (10,100)
      READ (*, 62) INFILE
      IF ((INDEX(INFILE, '')-1).EQ.0) INFILE = ZOWDIN
      IF (IP.EQ.2) WRITE (10, *) INFILE
      OPEN (UNIT=11, ERR=105, FILE=INFILE, MODE='READ', STATUS='OLD')
      GO TO 110
105
      WRITE (*, 72) INFILE
      IF (IP.EQ.2) WRITE (10,72)
      GO TO 90
OPEN (UNIT=12, ERR=115, FILE='ZOWDCOMB.DAT', MODE='READ', STATUS='OLD')
                                                                        FINAL
```

```
GO TO 120
115
      WRITE (*, 117)
117
      FORMAT(/' Combinations file (ZOWDCOMB.DAT) missing')
      STOP
120
      WRITE (*, 125)
      IF (IP.EQ.2) WRITE (10, 125)
125
      FORMAT(//5X,'**** GOAL SETTING PROCESS ****',///
     1 5X, 'The following goals are available: '/)
      DO 130 I = 1,MG
      IF (IP.EQ.2) WRITE (10, 135) I, GOALS (I)
130
      WRITE (*, 135) I, GOALS (I)
135
      FORMAT(I10, 3X, A)
      IF (IP.EQ.2) WRITE (10,140)
      WRITE (*, 140)
140
      FORMAT (/ Goals Seek to Maximize/Minimize Discharge Reduction '
     1,' as Follows:',//,
     27X, ' | -----', /
     3' Goal | All
                                     Point
                          Waste
                                              Ground
                                                       Surface
                                                                     Dom. '
     4/7x,'| Water
                       Water
                                 Sources
                                            Water
                                                      Runoff
                                                                 Waste'/)
      DO 150 I = 1, MG
      IF (IP.EQ.2) WRITE (10,155) I, (TKEY (KEYS (J, I)), J=1,6)
150
      WRITE (*, 155) I, (TKEY(KEYS(J, I)), J=1, 6)
155
      FORMAT (13, 6A10)
      IF (IP.EQ.2) WRITE (10, 160)
      WRITE (*, 160)
160
      FORMAT (/5X, '## Do you wish to change these, or add a goal? (Y/N)'
      READ (*, '(A)') YN
      IF (IP.EQ.2) WRITE (10,62) YN
      IF (YN.NE.'Y'.AND.YN.NE.'y') GO TO 220
162
      IF (IP.EQ.2) WRITE (10, 165)
      WRITE (*, 165)
165
      FORMAT (5X, '## Enter the Goal number to be changed.', /
     1 8X, '(for a new goal enter next available number - max 15):', \)
      READ (*, *, ERR=170) NG
      IF (IP.EQ.2) WRITE (10, *) NG
      IF (NG.GE.1.AND.NG.LT.16) GO TO 180
170
      WRITE (*, 175)
      IF (IP.EQ.2) WRITE (10, 175)
175
      FORMAT (10X, 'Sorry, you must enter a number between 1 and 15.')
      GO TO 162
180
      IF (NG.LE.MG) GO TO 190
      IF (IP.EQ.2) WRITE (10, 182)
      WRITE (*, 182)
182
      FORMAT(5X,'## New Goal Description:'\)
```

```
READ (*, 62) GOALS (NG)
       IF (IP.EQ.2) WRITE (10,62) GOALS (NG)
190
      IF (IP.EQ.2) WRITE (10, 192) NG, GOALS (NG)
      WRITE (*, 192) NG, GOALS (NG)
192
      FORMAT(/5X,'*** Goal: ',I3,3X,A,//
     15X, 'Enter an Objective Code for Each Category Below.',/
     25x,' Codes are as follows:'/
     35x,′
                1 = Not important/applicable for this goal.'/
                2 = Maximize Discharge Reduction in this category.'/
     45x,'
     55x,'
                3 = Minimize Reduction (i.e. increase discharge).'/)
      DO 205 I = 1.6
      IF (IP.EQ.2) WRITE (10, 197) CAT (I)
196
      WRITE (*, 197) CAT (I)
197
      FORMAT(10X, 'Category: ',A,' Code:'\)
      READ (*, *, ERR=199) NC
      IF (IP.EQ.2) WRITE (10, *) NC
      IF (NC.GE.1.AND.NC.LT.4) GO TO 203
199
      WRITE (*, 200)
      IF (IP.EQ.2) WRITE (10,200)
200
      FORMAT(10X, 'Sorry, you must enter a Code between 1 and 3.')
      GO TO 196
203
      KEYS (I, NG) =NC
C
С
        CHECK FOR INCOMPATIBLE OR REDUNDANT OBJECTIVES
C
      IF (I.EQ.1.AND.NC.NE.1)GO TO 210
      IF (I.EQ.3.AND.KEYS(2,NG).NE.1)KEYS(3,NG)=1
      IF (I.EQ.6.AND.KEYS(2,NG).NE.1)KEYS(6,NG)=1
205
      CONTINUE
210
      IF (MG.LT.NG) MG=NG
      GO TO 120
C
          GOAL LIST ESTABLISHED. NOW SELECT A GOAL FOR THIS RUN
С
220
      IF (IP.EQ.2) WRITE (10,230) MG
      WRITE (*, 230) MG
230
      FORMAT(/,5%,'## Select a Goal (A number from 1 to',13,'):'\)
      READ (*, *, ERR=235) IG
      IF (IP.EQ.2) WRITE (10, *) IG
      IF (IG.GE.1.AND.IG.LE.MG) GO TO 250
235
      WRITE (*, 240) MG
      IF (IP.EQ.2) WRITE (10,240) MG
240
      FORMAT(10X, 'Sorry, you must enter a number between 1 and', I3)
      GO TO 220
С
           A VALID GOAL HAS BEEN SELECTED. SPECIFY OBJECTIVES
```

FINAL Date: May 28, 1991 Revision: 0

```
250
      MK = 0
      DO 252 I = 1.6
      IF (KEYS (I, IG) .EQ.1) GO TO 252
      MK=MK+1
      OBJECT(1, MK) = -1
      IF (KEYS (I, IG) .EQ.3) OBJECT (1, MK) =1
      OBJECT(2,MK)=I
252
      CONTINUE
            SPECIFY A TIME (NOW, 5 YEARS, LONG TERM)
258
      IF (IP.EQ.2) WRITE (10,260)
      WRITE (*, 260)
260
      FORMAT (/5X, 'Please specify a time period for this goal.'/
     110X, 'Choices are:'/
     215X,'1 = Immediate (FY 1991/92)',/
     315X,'2 = Short-term (Within next five years)',/
     415X,'3 = Long term (Beyond five years)',//
     55X, '## Enter Time Period (1 to 3):'\)
      READ (*, *, ERR=270) ITIME
      IF (IP.EQ.2) WRITE (10, *) ITIME
      IF (ITIME.GE.1.AND.ITIME.LT.4) GO TO 272
270
      WRITE (*, 271)
      IF (IP.EQ.2) WRITE (10,271)
271
      FORMAT(10X, 'Sorry, you must enter a number between 1 and 3')
      GO TO 258
272
      IF (IP.EQ.2) WRITE (10,273)
273
      FORMAT(5X,'Use Low Cost as an additional objective? (Y/N)',\)
      WRITE (*, 273)
      LCOST=1
      READ (*, '(A)') YN
      IF (IP.EQ.2) WRITE (10,62) YN
      IF (YN.EQ.'Y'.OR.YN.EQ.'Y') LCOST=2
С
С
               READ IN DATA FOR ALL TASK/ALTERNATIVES
С
               DATA COMES FROM dBASE FILE
C
280
      IF (ISTART.EQ.2) GO TO 350
      READ (11, 300, END=350) N1, N2, DESIN, TEM4, TEM2A, TEM2B,
     1 ((MGIN(J, I), J=1, 2), I=1, 7), FINAN, IMPENV,
     2((INF(K,L),L=1,2),SYSTAF(K),REL(K),K=1,10),(MON(M),M=1,5)
300
     FORMAT(I3, I2, A50, A4, 2A2, 7(F7.1, F4.0), F6.0, I3,
     1 10(I3, I2, I1, A1), 5A5)
      IF (N1.LT.NP1) GO TO 350
      IF (N1.EQ.NP1.AND.N2.EQ.NP2) GO TO 303
      NT = NT + 1
      NALT(1,NT) = N1
```

```
NALT(2,NT) = N2
      NP1 = N1
      NP2 = N2
      DESC(NT) = DESIN
      IF (NTS.EQ.0) GO TO 301
      IF (N1.EQ.NALT (1, NT-1)) GO TO 303
301
      NTS = NTS + 1
      LOC(NTS) = NT
303
      DO 305 I=1,3
      IF (TEM4.EQ.TIM(I))GO TO 310
305
      CONTINUE
310
      ITI = I
      TYPE (ITI, 1, NT) = 1
      IF (TEM2A.EQ.'A') TYPE (ITI, 1, NT) = 2
      TYPE (ITI, 2, NT) = 1
      IF (TEM2B.EQ.'R') TYPE (ITI, 2, NT) = 2
      DO 320 I= 1,7
      MGY(ITI, I, NT) = MGIN(1, I)
320
      CONF (ITI, I, NT) = MGIN(2, I)
      COST (ITI, NT) =FINAN
      IMPACT (ITI, NT) = IMPENV
      DO 330 I = 1,10
      IF (INF (I, 1) .EQ. 0) GO TO 331
      INFBY(ITI,I,1,NT) = INF(I,1)
      INFBY(ITI,I,2,NT) = INF(I,2)
      INFBY(ITI, I, 3, NT) = SYSTAF(I)
      INFBY(ITI, I, 4, NT) = 5
      IF(REL(I).EQ.'A'.OR.REL(I).EQ.'a') INFBY(ITI,I,4,NT) = 1
      IF(REL(I).EQ.'B'.OR.REL(I).EQ.'b') INFBY(ITI,I,4,NT) = 2
      IF(REL(I).EQ.'C'.OR.REL(I).EQ.'c') INFBY(ITI,I,4,NT) = 3
330
      IF(REL(I).EQ.'D'.OR.REL(I).EQ.'d') INFBY(ITI,I,4,NT) = 4
      I = 11
331
      NINF(ITI,NT) = I-1
      DO 335 I = 1,5
      MONIT(ITI,I,NT) = MON(I)
335
      GO TO 280
С
C
         BEGIN PROCESSING THIS TASK/ALTERNATIVE
C
         FIRST DETERMINE POSSIBLE COMBINATIONS
С
         OF TASK/ALTERNATIVES RELEVANT TO
С
         THIS GOAL-SET
С
350
      IF (ISTART.EQ.2) GO TO 3561
      READ (12, 351) NLOCS, NTT
351
      FORMAT (215)
```

FINAL Date: May 28, 1991 Revision: 0

```
DO 3541 I = 1, NLOCS
      READ (12,3531) (LOCD (J,I), J=1, NTT)
3531 FORMAT (6014)
3541 CONTINUE
      REWIND 12
      IF (NTS.EQ.NTT) GO TO 3543
      IF (IP.EQ.2) WRITE (10, 3542) NTS, INFILE, NTT
      WRITE (*, 3542) NTS, INFILE, NTT
3542 FORMAT(/5X,I5,' Tasks in File ',A,/
     1
               5X, I5, ' Tasks in File ZOWDCOMB.DAT', /
     2
               5X, 'Smaller Number will be used', /)
      IF(NTS.LT.NTT) NTT = NTS
      IF(NTT.LT.NTS) NTS = NTT
3543 IF (IP.EQ.2) WRITE (10,353) NLOCS
      WRITE (*, 353) NLOCS
353
      FORMAT (/5X, 'There are', I10,' possible alternative combinations.',
     1/5X, 'Would you like intermediate results written to disk? (Y/N)'\)
      READ (*, '(A) ') YN
      IP2 = 1
      IF (IP.EQ.2) WRITE (10,62) YN
      IF(YN.EQ.'Y'.OR.YN.EQ.'v')IP2 = 2
      IF (IP.EQ.2) GO TO 3561
      IF(IP2.EQ.1) GO TO 3561
354
      WRITE (*, 60)
      READ (*, 62) OUTFIL
      IF ((INDEX(OUTFIL, ' ')-1).EQ.0) GO TO 356
      OPEN (UNIT=10, ERR=355, FILE=OUTFIL, MODE='WRITE', STATUS='UNKNOWN')
      CALL GETDAT (IYR, IMON, IDAY)
      CALL GETTIM (IHR, IMIN, ISEC, I100TH)
      WRITE (10, 65) IDAY, CMON (IMON), IYR, IHR, IMIN, OUTFIL
      GO TO 356
355
      WRITE (*,72) OUTFIL
      GO TO 354
356
      IP2 = 1
3561 IF (IP.EQ.2) WRITE (10, 3562)
      WRITE (*, 3562)
3562 FORMAT(//,10x,'*** PROCESSING BEGINS ***'/)
С
С
            SET UP ARRAY POINTER FOR VALID "INFLUENCING TASKS"
C
      IF (ISTART.EQ.2) GO TO 3522
      DO 3521 K = 1,NT
      DO 3521 I = 1,3
      IF (NINF (I, K).EQ.0) GO TO 3521
      J1 = NINF(I,K)
```

FINAL

```
DO 3520 J = 1,J1
      DO 3500 M = 1,NT
      IF (NALT(1, M) . EQ. INFBY(I, J, 1, K) . AND.
         NALT (2,M) . EQ. INFBY (I,J,2,K) GO TO 3515
3500 CONTINUE
      IF(IP.EQ.2) WRITE(10,3510) INFBY(I,J,1,K),INFBY(I,J,2,K),I,
         NALT (1, K), NALT (2, K)
      WRITE (*, 3510) INFBY (I, J, 1, K), INFBY (I, J, 2, K), I,
         NALT(1,K), NALT(2,K)
3510 FORMAT(/5X,'Invalid Influencing Task/Alternative:',215,
     1/5x,' Specified for time:', I2,', Task/Alt:', 2I3,
     2/5x,' Will be ignored for this run.')
      INFBY(I,J,3,K) = -1
      INFBY (I, J, 1, K) = LOC(M)
      GO TO 3520
3515 INFBY (I, J, 1, K) = M
3520 CONTINUE
3521 CONTINUE
С
           INITIALIZE ACCUMULATOR FOR OPTIMUM ZOWD
3522 \text{ ACO} = 1E10
      ACOST=1E10
      IF (OBJECT (1,1).EQ.1) ACO=-1E10
      DO 550 II = 1,NLOCS
      DO 3529 JJ = 1,NTT
3529 LOCT(JJ) = LOCD(JJ, II)
      IF (IP.EQ.2) WRITE (10,3530) II
      WRITE (*, 3530) II
3530 FORMAT (5X, 'Processing Combination:', I6)
      DO 358 I = 1,5
      KNUM(1,I)=0
      KNUM(2,I)=0
      DO 358 J = 1.5
      ACCUM(1,I,J) = 0.
358
      ACCUM(2,I,J) = 0.
      DO 359 I = 1,30
      TSKEFF(1,I) = 0
359
      TSKEFF(2,I) = 0
      NTF1 = 0
      NTF2 = 0
      DO 372 M = 1,NTS
      N = LOCT(M)
      DO 360 J = 1,15
```

```
DO 360 K = 1,3
      IF (NALT (1, N) . EQ . TGROUP (J, K) ) GO TO 361
360
      CONTINUE
      K = 4
361
      IGP = K
С
C
          CHECK WHETHER THIS TASK HAS A DELTA MGY FOR EACH OBJECTIVE
C
      KP = 1
      DO 370 K = 1, MK
      DELTA = MGY(ITIME, OBJECT(2, K), N)
C
C
           CHECK TASK RELATIONSHIP TO OTHER TASKS
C
           AND SELECT OPTIMAL DELTA
C
      IF (DELTA.EO.O.) GO TO 370
      CALL RELAT (OBJECT (2, K), ITIME, N)
      IF (DELTA.EQ.0.) GO TO 370
      IF (KP.NE.1) GO TO 3630
      IF (IP2.EQ.2) WRITE (10, 3620) NALT (1, N), NALT (2, N)
3620 FORMAT(/10X, 'Task', I3,'; Alternative', I3)
      KP = 2
3630 IF (ABS (DELTA) / DELTA. EQ. OBJECT (1, K)) GO TO 365
      ACCUM(2,1,IGP) = ACCUM(2,1,IGP) + DELTA
      ACCUM(2,1,5) = ACCUM(2,1,5) + DELTA
      ACCUM(2,2,IGP)=ACCUM(2,2,IGP)+DELTA*CONF(ITIME,OBJECT(2,K),N)/100
      ACCUM(2,2,5) = ACCUM(2,2,5) + DELTA*CONF(ITIME,OBJECT(2,K),N)/100
      ACCUM(2,3,IGP) = ACCUM(2,3,IGP) + COST(ITIME,N)
      ACCUM(2,3,5) = ACCUM(2,3,5) + COST(ITIME,N)
      ACCUM(2,4,IGP)=ACCUM(2,4,IGP)+IMPACT(ITIME,N)
      ACCUM(2,4,5) = ACCUM(2,4,5) + IMPACT(ITIME,N)
      KNUM(2, IGP) = KNUM(2, IGP) + 1
      KNUM(2,5) = KNUM(2,5) + 1
      IF (NTF2.EQ.0) GO TO 363
      IF (TSKEFF (2, NTF2) .EQ.N) GO TO 370
363
      NTF2 = NTF2 + 1
      TSKEFF(2,NTF2) = N
      GO TO 370
365
      ACCUM(1,1,IGP) = ACCUM(1,1,IGP) + DELTA
      ACCUM(1,1,5) = ACCUM(1,1,5) + DELTA
      ACCUM(1, 2, IGP) = ACCUM(1, 2, IGP) + DELTA * CONF(ITIME, OBJECT(2, K), N) / 100
      ACCUM(1,2,5) = ACCUM(1,2,5) + DELTA*CONF(ITIME,OBJECT(2,K),N)/100
      ACCUM(1,3,IGP) = ACCUM(1,3,IGP) + COST(ITIME,N)
      ACCUM(1,3,5) = ACCUM(1,3,5) + COST(ITIME,N)
      ACCUM(1, 4, IGP) = ACCUM(1, 4, IGP) + IMPACT(ITIME, N)
```

```
ACCUM(1,4,5) = ACCUM(1,4,5) + IMPACT(ITIME,N)
      KNUM(1, IGP) = KNUM(1, IGP) + 1
      KNUM(1,5) = KNUM(1,5) + 1
      IF (NTF1.EQ.0) GO TO 367
      IF (TSKEFF (1, NTF1) .EQ.N) GO TO 370
367
      NTF1 = NTF1 + 1
      TSKEFF(1,NTF1) = N
370
      CONTINUE
372
      CONTINUE
С
С
           SAVE "OPTIMAL" ACCUMULATION AND TASK/ALT ID
C
      IF (OBJECT (1,1).EQ.-1) GO TO 387
      IF (ACO.LE.(ACCUM(1,1,5)+ACCUM(2,1,5))) GO TO 390
375
      ACO = ACCUM(1,1,5) + ACCUM(2,1,5)
      ACOST = ACCUM(1,3,5) + ACCUM(2,3,5)
      DO 380 I =1,5
      KNUMO(1,I) = KNUM(1,I)
      KNUMO(2,I) = KNUM(2,I)
      DO 380 J = 1,5
      ACCUMO(1,I,J) = ACCUM(1,I,J)
380
      ACCUMO(2,I,J) = ACCUM(2,I,J)
      DO 385 I = 1,30
      TSKEFO(1,I) = TSKEFF(1,I)
385
      TSKEFO(2,I) = TSKEFF(2,I)
      NTFO1 = NTF1
      NTFO2 = NTF2
      GO TO 400
387
      IF (ACO.GT. (ACCUM(1,1,5) + ACCUM(2,1,5))) GO TO 375
390
      IF (ACO.NE. (ACCUM(1,1,5) + ACCUM(2,1,5))) GO TO 400
      IF (LCOST.EQ.1) GO TO 400
C
С
           CHECK FOR LOW COST
C
      IF (ACOST.GT. (ACCUM(1,3,5)+ACCUM(2,3,5)))GO TO 375
C
С
         OBJECTIVES CHECKED FOR ALL TASKS. PRINT RESULTS FOR
С
           THIS COMBINATION, IF REQUESTED
C
400
      IF (IP2.EQ.2) WRITE (10, 410) IG, GOALS (IG)
410
      FORMAT(///,5X,' **** Goal Selected is:',I3,2X,A25/)
      IF (NTF1.GT.0) GO TO 415
      IF (IP2.EQ.2) WRITE (10, 412)
412
      FORMAT (5X, '*** NO ACTIONS FOUND WHICH SUPPORT THIS GOAL.'/)
      GO TO 450
```

```
415
      IF (IP2.EQ.2) WRITE (10, 416)
416
      FORMAT (
     1 5X, 'Actions which SUPPORT the objectives of this goal are: ', /)
      DO 430 I = 1,NTF1
      M = TSKEFF(1, I)
      IF (IP2.EQ.2) WRITE (10, 420) NALT (1, M), NALT (2, M), DESC (M)
420
      FORMAT (5X, 213, 2X, A)
430
      CONTINUE
      DO 445 J = 1,5
      IF (KNUM (1, J) . EQ. 0) GO TO 445
      ACCUM(1, 4, J) = ACCUM(1, 4, J) / KNUM(1, J)
      IF (IP2.EQ.2) WRITE (10, 440) GROUP (J), (ACCUM(1, I, J), I=1, 4)
440
      FORMAT (/2X, A23, /
              5X, 'Total change in Offsite Water Discharge:',F10.1,' MGY'
     2/,5X,
                 'Minimum change with confidence factor: ',F10.1,' MGY'
                  'Approximate Total Cost ($ millions): ',F10.2,
     3/,5x,
     4/, 5X,
                  'Average environmental impact code (0-10)',F10.2/)
445
      CONTINUE
450
      IF (NTF2.GT.0) GO TO 515
      IF (IP2.EQ.2) WRITE (10,512)
      FORMAT (5X, '*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.'/)
512
      GO TO 550
515
      IF (IP2.EQ.2) WRITE (10,516)
516
      FORMAT (//
     1 5X, 'Actions which OPPOSE the objectives of this goal are:',/)
      DO 530 I = 1,NTF2
      M = TSKEFF(2, I)
      IF (IP2.EQ.2) WRITE (10, 420) NALT (1, M), NALT (2, M), DESC (M)
530
      CONTINUE
      DO 545 J=1,5
      IF (KNUM(2, J).EQ.0)GO TO 545
      ACCUM(2,4,J) = ACCUM(2,4,J) / KNUM(2,J)
      IF (IP2.EQ.2) WRITE (10, 440) GROUP (J), (ACCUM(2, I, J), I=1, 4)
545
      CONTINUE
550
      CONTINUE
C
С
            DISPLAY OPTIMAL RESULTS FOR THIS GOAL
C
      IF (IP.EQ.2) WRITE (10, 410) IG, GOALS (IG)
      WRITE (*, 410) IG, GOALS (IG)
      IF (IP.EQ.2) WRITE (10,1413)
      WRITE (*, 1413)
1413 FORMAT(/' <<<<The best combination of Tasks for this goal follows
     1>>>>//
      IF (NTFO1.GT.0) GO TO 1415
```

FINAL Date: May 28, 1991

Revision: 0

```
IF (IP.EQ.2) WRITE (10,412)
       WRITE (*, 412)
       GO TO 1450
1415
      IF (IP.EQ.2) WRITE (10, 416)
       WRITE (*, 416)
      DO 1430 I = 1.NTFO1
      M = TSKEFO(1, I)
       IF (IP.EQ.2) WRITE (10, 420) NALT (1, M), NALT (2, M), DESC (M)
       WRITE (*, 420) NALT (1, M), NALT (2, M), DESC (M)
1430 CONTINUE
      DO 1445 J = 1,5
       IF (KNUMO (1, J) .EQ. 0) GO TO 1445
       ACCUMO(1, 4, J) = ACCUMO(1, 4, J) / KNUMO(1, J)
       IF (IP.EQ.2) WRITE (10, 440) GROUP (J), (ACCUMO (1, I, J), I=1, 4)
      WRITE (*, 440) GROUP (J), (ACCUMO(1, I, J), I=1, 4)
      PAUSE ' *** Press ENTER to continue'
1445 CONTINUE
1450 IF (NTFO2.GT.0) GO TO 1515
      IF (IP.EQ.2) WRITE (10,512)
      WRITE (*, 512)
      GO TO 1550
1515 IF (IP.EQ.2) WRITE (10,516)
      WRITE (*, 516)
      DO 1530 I = 1,NTFO2
      M = TSKEFO(2, I)
      IF (IP.EQ.2) WRITE (10, 420) NALT (1, M), NALT (2, M), DESC (M)
      WRITE (*, 420) NALT (1, M), NALT (2, M), DESC (M)
1530 CONTINUE
      DO 1545 J=1,5
      IF (KNUMO(2, J) .EQ.0) GO TO 1545
      ACCUMO(2, 4, J) = ACCUMO(2, 4, J) / KNUMO(2, J)
      IF (IP.EQ.2) WRITE (10,440) GROUP (J), (ACCUMO (2, I, J), I=1,4)
      WRITE (*, 440) GROUP (J), (ACCUMO(2, I, J), I=1, 4)
      PAUSE ' *** Press ENTER to continue'
1545 CONTINUE
С
C
           CHECK IF MORE GOALS ARE TO BE EVALUATED
C
1550 IF (IP.EQ.2) WRITE (10,600)
      WRITE (*, 600)
600
      FORMAT(//5X,'Evaluation Complete. New Goal? (Y/N):'\)
      ISTART=2
      READ (*, '(A)') YN
      IF (IP.EQ.2) WRITE (10,62) YN
      IF (YN.EQ.'Y'.OR.YN.EQ.'y') GO TO 120
```

FINAL

```
С
С
           SAVE GOAL DATA
C
      WRITE (13, 20) MG, GOALS, KEYS
      STOP
      END
C
С
            SUBROUTINE "RELAT"
С
            CHECKS RELATIONSHIP WITH OTHER TASKS
С
            PREVENTS DOUBLE COUNTING OF DELTA
C
      SUBROUTINE RELAT (KCODE, ITIME, N)
      INTEGER INFBY (3, 10, 4, 100), NINF (3, 100), LOCT (100)
      REAL MGY (3, 7, 100), CONF (3, 7, 100)
      COMMON DELTA, NTS, LOCT
      COMMON INFBY, MGY, CONF, NINF
      MAX = NINF(ITIME, N)
      IF (MAX.LE.O) RETURN
      DO 200 I = 1, MAX
      NIN = INFBY(ITIME, I, 1, N)
      DO 50 J = 1,NTS
      IF (NIN.EQ.LOCT(J))GO TO 60
50
      CONTINUE
      GO TO 200
60
      DELTIN = MGY(ITIME, KCODE, NIN)
      IF (DELTIN.EQ.0.) GO TO 200
      IF (KCODE.EQ.1) GO TO 70
      IF (INFBY (ITIME, I, 3, N) .NE.KCODE) GO TO 200
70
      IF (INFBY (ITIME, I, 4, N) .EQ.1) GO TO 90
      IF (INFBY (ITIME, I, 4, N) .EQ.2) GO TO 200
      IF (INFBY (ITIME, I, 4, N) .EQ. 3) GO TO 150
      IF (INFBY (ITIME, I, 4, N) .EQ. 4) GO TO 100
      GO TO 200
90
      IF (DELTIN.GE.O.OR.DELTA.GE.O.) GO TO 200
      IF (DELTA.LE.DELTIN) DELTA = DELTA - DELTIN
      GO TO 200
100
      IF (DELTIN.LT.O.) DELTA = DELTA - DELTIN
      GO TO 200
150
      IF (DELTIN.GT.O.) DELTA = DELTA - DELTIN
200
      CONTINUE
      RETURN
      END
```

Revision: 0

C

.

APPENDIX C

Sample ZOWD Run Disk Output

ZOWD PROGRAM OUTPUT FOR SESSION ON 25 Apr, 1991 AT 08:21 OUTPUT FILE: AFB.TST

Enter the INPUT FILE pathname (ZOWDIN2.DAT): ZOWDIN2.DAT

**** GOAL SETTING PROCESS ****

The following goals are available:

- 1 Absolute Zero-Discharge
- 2 Zero Waste Discharge
- 3 BAT Treated Waste OK
- 4 No point source discharge
- 5 No ground water discharge
- 6 No storm water discharge

Goals Seek to Maximize/Minimize Discharge Reduction as Follows:

Goal	All	Waste	Point	Ground	Surface	Dom.
	Water	Water	Sources	Water	Runoff	Waste
1	MAX					
2		MAX				
3		MIN				
4			MAX			
5				MAX		
6					MAX	

Do you wish to change these, or add a goal? (Y/N)

Select a Goal (A number from 1 to 6):
2

Please specify a time period for this goal.

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Choices are:

- 1 = Immediate (FY 1991/92)
- 2 = Short-term (Within next five years)
- 3 = Long term (Beyond five years)

Enter Time Period (1 to 3):

2

Use Low Cost as an additional objective? (Y/N)

Y

There are 27 possible alternative combinations. Would you like intermediate results written to disk? (Y/N)

Y

*** PROCESSING BEGINS ***

Processing Combination: 1

Task 11; Alternative 0

Task 21; Alternative 0

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 0 Process Water Reuse Potential Study
- 21 0 Temporary Water Storage New Off-Channel
- I. Wastewater Recycle

Total change in Offsite Water Discharge:	-74.0 MGY
Minimum change with confidence factor:	-59.2 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-44.1 MGY
Minimum change with confidence factor:	-22.0 MGY
Approximate Total Cost (\$ millions):	12.80
Average environmental impact code (0-10)	6.00

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Total All Groups

Total change in Offsite Water Discharge: -118.1 MGY
Minimum change with confidence factor: -81.3 MGY
Approximate Total Cost (\$ millions): 14.47
Average environmental impact code (0-10) 4.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 2

Task 11; Alternative 0

Task 21; Alternative 1

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 0 Process Water Reuse Potential Study
- 21 1 Temporary Water Storage Great Western

I. Wastewater Recycle

Total change in Offsite Water Discharge:	-74.0 MGY
Minimum change with confidence factor:	-59.2 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	91.10
Average environmental impact code (0-10)	9.00

Total All Groups

Total change in Offsite Water Discharge:	-154.7 MGY
Minimum change with confidence factor:	-99.6 MGY
Approximate Total Cost (\$ millions):	92.77
Average environmental impact code (0-10)	5.50

^{***} NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 3		
Task 11; Alternative 0		
Task 21; Alternative 2		
**** Goal Selected is: 2 Zero Waste Disc	charge	
Actions which SUPPORT the objectives of the	is goal a	are:
11 0 Process Water Reuse Potential Study	y .	
21 2 Temporary Water Storage - Terminal		
I. Wastewater Recycle		
Total change in Offsite Water Discharge:	-74.0	MCV
Minimum change with confidence factor:	-59.2	
Approximate Total Cost (\$ millions):	1.67	-101
Average environmental impact code (0-10)	2.00	
II. Storm Water		
Total change in Offsite Water Discharge:	-80.7	MGY
Minimum change with confidence factor:	-40.3	
Approximate Total Cost (\$ millions):	16.30	
Average environmental impact code (0-10)	8.00	
Total All Groups		
Total change in Offsite Water Discharge:	-154.7	MGY
Minimum change with confidence factor:	-99.6	MGY
Approximate Total Cost (\$ millions):	17.97	
Average environmental impact code (0-10)	5.00	

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 4

Task 11; Alternative 0

Task 21; Alternative 0

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 0 Process Water Reuse Potential Study
- 21 0 Temporary Water Storage New Off-Channel

I. Wastewater Recycle

Total change in Offsite Water Discharge: -74.0 MGY
Minimum change with confidence factor: -59.2 MGY
Approximate Total Cost (\$ millions): 1.67
Average environmental impact code (0-10) 2.00

II. Storm Water

Total change in Offsite Water Discharge: -44.1 MGY
Minimum change with confidence factor: -22.0 MGY
Approximate Total Cost (\$ millions): 12.80
Average environmental impact code (0-10) 6.00

Total All Groups

Total change in Offsite Water Discharge: -118.1 MGY
Minimum change with confidence factor: -81.3 MGY
Approximate Total Cost (\$ millions): 14.47
Average environmental impact code (0-10) 4.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 5

Task 11; Alternative 0

Task 21; Alternative 1

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 0 Process Water Reuse Potential Study
- 21 1 Temporary Water Storage Great Western

I. Wastewater Recycle

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Total change in Offsite Water Discharge:	-74.0 MGY
Minimum change with confidence factor:	-59.2 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge: -80.7 MGY
Minimum change with confidence factor: -40.3 MGY
Approximate Total Cost (\$ millions): 91.10
Average environmental impact code (0-10) 9.00

Total All Groups

Total change in Offsite Water Discharge: -154.7 MGY
Minimum change with confidence factor: -99.6 MGY
Approximate Total Cost (\$ millions): 92.77
Average environmental impact code (0-10) 5.50

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination:

Task 11; Alternative 0

Task 21; Alternative 2

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 0 Process Water Reuse Potential Study
- 21 2 Temporary Water Storage Terminal Ponds

I. Wastewater Recycle

Total change in Offsite Water Discharge: -74.0 MGY
Minimum change with confidence factor: -59.2 MGY
Approximate Total Cost (\$ millions): 1.67
Average environmental impact code (0-10) 2.00

II. Storm Water

Total change in Offsite Water Discharge: -80.7 MGY

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Minimum change with confidence factor: -40.3 MGY
Approximate Total Cost (\$ millions): 16.30
Average environmental impact code (0-10) 8.00

Total All Groups

Total change in Offsite Water Discharge: -154.7 MGY
Minimum change with confidence factor: -99.6 MGY
Approximate Total Cost (\$ millions): 17.97
Average environmental impact code (0-10) 5.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 7

Task 11; Alternative 0

Task 21; Alternative 0

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 0 Process Water Reuse Potential Study
- 21 0 Temporary Water Storage New Off-Channel

I. Wastewater Recycle

Total change in Offsite Water Discharge: -74.0 MGY
Minimum change with confidence factor: -59.2 MGY
Approximate Total Cost (\$ millions): 1.67
Average environmental impact code (0-10) 2.00

II. Storm Water

Total change in Offsite Water Discharge: -44.1 MGY
Minimum change with confidence factor: -22.0 MGY
Approximate Total Cost (\$ millions): 12.80
Average environmental impact code (0-10) 6.00

Total All Groups

Total change in Offsite Water Discharge: -118.1 MGY
Minimum change with confidence factor: -81.3 MGY

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Approximate Total Cost (\$ millions): 14.47 Average environmental impact code (0-10) 4.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination:

Task 11; Alternative 0

Task 21; Alternative 1

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 0 Process Water Reuse Potential Study
- 21 1 Temporary Water Storage Great Western
- I. Wastewater Recycle

Total change in Offsite Water Discharge:	-74.0 MGY
Minimum change with confidence factor:	-59.2 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	91.10
Average environmental impact code (0-10)	9.00

Total All Groups

Total change in Offsite Water Discharge:	-154.7 MGY
Minimum change with confidence factor:	-99.6 MGY
Approximate Total Cost (\$ millions):	92.77
Average environmental impact code (0-10)	5.50

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 9

Task 11; Alternative 0

Task 21; Alternative 2

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 0 Process Water Reuse Potential Study
- 21 2 Temporary Water Storage Terminal Ponds

I. Wastewater Recycle

Total change in Offsite Water Discharge:	-74.0 MGY
Minimum change with confidence factor:	-59.2 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	16.30
Average environmental impact code (0-10)	8.00

Total All Groups

Total change in Offsite Water Discharge:	-154.7 MGY
Minimum change with confidence factor:	-99.6 MGY
Approximate Total Cost (\$ millions):	17.97
Average environmental impact code (0-10)	5.00

^{***} NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 10

Task 11; Alternative 1

Task 21; Alternative 0

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

- 11 1 Task 11/13 Selected Alternate, Increase Capac.
- 21 0 Temporary Water Storage New Off-Channel

I. Wastewater Recycle

Total change in Offsite Water Discharge: -76.2 MGY
Minimum change with confidence factor: -61.0 MGY
Approximate Total Cost (\$ millions): 1.67
Average environmental impact code (0-10) 2.00

II. Storm Water

Total change in Offsite Water Discharge: -44.1 MGY
Minimum change with confidence factor: -22.0 MGY
Approximate Total Cost (\$ millions): 12.80
Average environmental impact code (0-10) 6.00

Total All Groups

Total change in Offsite Water Discharge: -120.3 MGY
Minimum change with confidence factor: -83.0 MGY
Approximate Total Cost (\$ millions): 14.47
Average environmental impact code (0-10) 4.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 11

Task 11; Alternative 1

Task 21; Alternative 1

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 1 Task 11/13 Selected Alternate, Increase Capac.
- 21 1 Temporary Water Storage Great Western

Wastewater Recycle

Total change in Offsite Water Discharge: -76.2 MGY
Minimum change with confidence factor: -61.0 MGY
Approximate Total Cost (\$ millions): 1.67
Average environmental impact code (0-10) 2.00

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	91.10
Average environmental impact code (0-10)	9.00

Total All Groups

Total change in Offsite Water Discharge:	-156.9 MGY
Minimum change with confidence factor:	-101.3 MGY
Approximate Total Cost (\$ millions):	92.77
Average environmental impact code (0-10)	5.50

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 12

Task 11; Alternative 1

Task 21; Alternative 2

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 1 Task 11/13 Selected Alternate, Increase Capac.
- 21 2 Temporary Water Storage Terminal Ponds

I. Wastewater Recycle

Total change in Offsite Water Discharge:	-76.2 MGY
Minimum change with confidence factor:	-61.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	16.30
Average environmental impact code (0-10)	8.00

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Total All Groups

Total change in Offsite Water Discharge: -156.9 MGY
Minimum change with confidence factor: -101.3 MGY
Approximate Total Cost (\$ millions): 17.97
Average environmental impact code (0-10) 5.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 13

Task 11; Alternative 1

Task 21; Alternative 0

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 1 Task 11/13 Selected Alternate, Increase Capac.
- 21 0 Temporary Water Storage New Off-Channel

I. Wastewater Recycle

Total change in Offsite Water Discharge:	-76.2 MGY
Minimum change with confidence factor:	-61.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-44.1 MGY
Minimum change with confidence factor:	-22.0 MGY
Approximate Total Cost (\$ millions):	12.80
Average environmental impact code (0-10)	6.00

Total All Groups

Total change in Offsite Water Discharge:	-120.3 MGY
Minimum change with confidence factor:	-83.0 MGY
Approximate Total Cost (\$ millions):	14.47
Average environmental impact code (0-10)	4.00

^{***} NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Revision: 0

Processing Combination: 14

Task 11; Alternative 1

Task 21; Alternative 1

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 1 Task 11/13 Selected Alternate, Increase Capac.
- 21 1 Temporary Water Storage Great Western
- I. Wastewater Recycle

Total change in Offsite Water Discharge:	-76.2 MGY
Minimum change with confidence factor:	-61.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	91.10
Average environmental impact code (0-10)	9.00

Total All Groups

Total change in Offsite Water Discharge:	-156.9 MGY
Minimum change with confidence factor:	-101.3 MGY
Approximate Total Cost (\$ millions):	92.77
Average environmental impact code (0-10)	5.50

^{***} NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 15

Task 11; Alternative 1

Task 21; Alternative 2

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 1 Task 11/13 Selected Alternate, Increase Capac.
- 21 2 Temporary Water Storage Terminal Ponds

I. Wastewater Recycle

Total change in Offsite Water Discharge: -76.2 MGY
Minimum change with confidence factor: -61.0 MGY
Approximate Total Cost (\$ millions): 1.67
Average environmental impact code (0-10) 2.00

II. Storm Water

Total change in Offsite Water Discharge: -80.7 MGY
Minimum change with confidence factor: -40.3 MGY
Approximate Total Cost (\$ millions): 16.30
Average environmental impact code (0-10) 8.00

Total All Groups

Total change in Offsite Water Discharge: -156.9 MGY
Minimum change with confidence factor: -101.3 MGY
Approximate Total Cost (\$ millions): 17.97
Average environmental impact code (0-10) 5.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 16

Task 11; Alternative 1

Task 21; Alternative 0

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 1 Task 11/13 Selected Alternate, Increase Capac.
- 21 0 Temporary Water Storage New Off-Channel

I. Wastewater Recycle

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Total change in Offsite Water Discharge:	-76.2 MGY
Minimum change with confidence factor:	-61.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-44.1 MGY
Minimum change with confidence factor:	-22.0 MGY
Approximate Total Cost (\$ millions):	12.80
Average environmental impact code (0-10)	6.00

Total All Groups

Total change in Offsite Water Discharge: -120.3 MGY
Minimum change with confidence factor: -83.0 MGY
Approximate Total Cost (\$ millions): 14.47
Average environmental impact code (0-10) 4.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 17

Task 11; Alternative 1

Task 21; Alternative 1

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 1 Task 11/13 Selected Alternate, Increase Capac.
- 21 1 Temporary Water Storage Great Western

I. Wastewater Recycle

Total change in Offsite Water Discharge:	-76.2 MGY
Minimum change with confidence factor:	-61.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge: -80.7 MGY

Minimum change with confidence factor: -40.3 MGY
Approximate Total Cost (\$ millions): 91.10
Average environmental impact code (0-10) 9.00

Total All Groups

Total change in Offsite Water Discharge: -156.9 MGY
Minimum change with confidence factor: -101.3 MGY
Approximate Total Cost (\$ millions): 92.77
Average environmental impact code (0-10) 5.50

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 18

Task 11; Alternative 1

Task 21; Alternative 2

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 1 Task 11/13 Selected Alternate, Increase Capac.
- 21 2 Temporary Water Storage Terminal Ponds

Wastewater Recycle

Total change in Offsite Water Discharge: -76.2 MGY
Minimum change with confidence factor: -61.0 MGY
Approximate Total Cost (\$ millions): 1.67
Average environmental impact code (0-10) 2.00

II. Storm Water

Total change in Offsite Water Discharge: -80.7 MGY
Minimum change with confidence factor: -40.3 MGY
Approximate Total Cost (\$ millions): 16.30
Average environmental impact code (0-10) 8.00

Total All Groups

Total change in Offsite Water Discharge: -156.9 MGY
Minimum change with confidence factor: -101.3 MGY

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Approximate Total Cost (\$ millions): 17.97 Average environmental impact code (0-10) 5.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 19

Task 11; Alternative 2

Task 21; Alternative 0

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 2 Task 11/13 Selected Alternate, Decreased Capac.
- 21 0 Temporary Water Storage New Off-Channel
- I. Wastewater Recycle

Total change in Offsite Water Discharge:	-63.8 MGY
Minimum change with confidence factor:	-51.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-44.1 MGY
Minimum change with confidence factor:	-22.0 MGY
Approximate Total Cost (\$ millions):	12.80
Average environmental impact code (0-10)	6.00

Total All Groups

Total change in Offsite Water Discharge:	-107.9 MGY
Minimum change with confidence factor:	-73.1 MGY
Approximate Total Cost (\$ millions):	14.47
Average environmental impact code (0-10)	4.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 20

Task 11; Alternative 2

Task 21; Alternative 1

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 2 Task 11/13 Selected Alternate, Decreased Capac.
- 21 1 Temporary Water Storage Great Western

I. Wastewater Recycle

Total change in Offsite Water Discharge:	-63.8 MGY
Minimum change with confidence factor:	-51.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	91.10
Average environmental impact code (0-10)	9.00

Total All Groups

Total change in Offsite Water Discharge:	-144.5 MGY
Minimum change with confidence factor:	-91.4 MGY
Approximate Total Cost (\$ millions):	92.77
Average environmental impact code (0-10)	5.50

^{***} NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 21

Task 11; Alternative 2

Task 21; Alternative 2

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

- 11 2 Task 11/13 Selected Alternate, Decreased Capac.
- 21 2 Temporary Water Storage Terminal Ponds
- I. Wastewater Recycle

Total change in Offsite Water Discharge: -63.8 MGY
Minimum change with confidence factor: -51.0 MGY
Approximate Total Cost (\$ millions): 1.67
Average environmental impact code (0-10) 2.00

II. Storm Water

Total change in Offsite Water Discharge: -80.7 MGY
Minimum change with confidence factor: -40.3 MGY
Approximate Total Cost (\$ millions): 16.30
Average environmental impact code (0-10) 8.00

Total All Groups

Total change in Offsite Water Discharge: -144.5 MGY
Minimum change with confidence factor: -91.4 MGY
Approximate Total Cost (\$ millions): 17.97
Average environmental impact code (0-10) 5.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 22

Task 11; Alternative 2

Task 21; Alternative 0

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 2 Task 11/13 Selected Alternate, Decreased Capac.
- 21 0 Temporary Water Storage New Off-Channel
- I. Wastewater Recycle

Total change in Offsite Water Discharge: -63.8 MGY
Minimum change with confidence factor: -51.0 MGY
Approximate Total Cost (\$ millions): 1.67
Average environmental impact code (0-10) 2.00

II. Storm Water

Total change in Offsite Water Discharge:	-44.1 MGY
Minimum change with confidence factor:	-22.0 MGY
Approximate Total Cost (\$ millions):	12.80
Average environmental impact code (0-10)	6.00

Total All Groups

Total change in Offsite Water Discharge:	-107.9 MGY
Minimum change with confidence factor:	-73.1 MGY
Approximate Total Cost (\$ millions):	14.47
Average environmental impact code (0-10)	4.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 23

Task 11; Alternative 2

Task 21; Alternative 1

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 2 Task 11/13 Selected Alternate, Decreased Capac.
- 21 1 Temporary Water Storage Great Western

I. Wastewater Recycle

Total change in Offsite Water Discharge:	-63.8 MGY
Minimum change with confidence factor:	-51.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	91.10
Average environmental impact code (0-10)	9.00

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Total All Groups

Total change in Offsite Water Discharge: -144.5 MGY
Minimum change with confidence factor: -91.4 MGY
Approximate Total Cost (\$ millions): 92.77
Average environmental impact code (0-10) 5.50

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 24

Task 11; Alternative 2

Task 21; Alternative 2

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 2 Task 11/13 Selected Alternate, Decreased Capac.
- 21 2 Temporary Water Storage Terminal Ponds

I. Wastewater Recycle

Total change in Offsite Water Discharge:	-63.8 MGY
Minimum change with confidence factor:	-51.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	16.30
Average environmental impact code (0-10)	8.00

Total All Groups

Total change in Offsite Water Discharge:	-144.5 MGY
Minimum change with confidence factor:	-91.4 MGY
Approximate Total Cost (\$ millions):	17.97
Average environmental impact code (0-10)	5.00

^{***} NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Processing Combination: 25

Task 11; Alternative 2

Task 21; Alternative 0

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 2 Task 11/13 Selected Alternate, Decreased Capac.
- 21 0 Temporary Water Storage New Off-Channel
- I. Wastewater Recycle

Total change in Offsite Water Discharge:	-63.8 MGY
Minimum change with confidence factor:	-51.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-44.1 MGY
Minimum change with confidence factor:	-22.0 MGY
Approximate Total Cost (\$ millions):	12.80
Average environmental impact code (0-10)	6.00

Total All Groups

Total change in Offsite Water Discharge:	-107.9 MGY
Minimum change with confidence factor:	-73.1 MGY
Approximate Total Cost (\$ millions):	14.47
Average environmental impact code (0-10)	4.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 26

Task 11: Alternative 2

Task 21; Alternative 1

Study of Water Resource · Management; Zero-Offsite Water-Discharge Study

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 2 Task 11/13 Selected Alternate, Decreased Capac.
- 21 1 Temporary Water Storage Great Western
- I. Wastewater Recycle

Total change in Offsite Water Discharge: -63.8 MGY
Minimum change with confidence factor: -51.0 MGY
Approximate Total Cost (\$ millions): 1.67
Average environmental impact code (0-10) 2.00

II. Storm Water

Total change in Offsite Water Discharge: -80.7 MGY
Minimum change with confidence factor: -40.3 MGY
Approximate Total Cost (\$ millions): 91.10
Average environmental impact code (0-10) 9.00

Total All Groups

Total change in Offsite Water Discharge: -144.5 MGY
Minimum change with confidence factor: -91.4 MGY
Approximate Total Cost (\$ millions): 92.77
Average environmental impact code (0-10) 5.50

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Processing Combination: 27

Task 11; Alternative 2

Task 21; Alternative 2

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 2 Task 11/13 Selected Alternate, Decreased Capac.
- 21 2 Temporary Water Storage Terminal Ponds
- I. Wastewater Recycle

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Total change in Offsite Water Discharge:	-63.8 MGY
Minimum change with confidence factor:	-51.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	16.30
Average environmental impact code (0-10)	8.00

Total All Groups

Total change in Offsite Water Discharge:	-144.5 MGY
Minimum change with confidence factor:	-91.4 MGY
Approximate Total Cost (\$ millions):	17.97
Average environmental impact code (0-10)	5.00

^{***} NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

**** Goal Selected is: 2 Zero Waste Discharge

Actions which SUPPORT the objectives of this goal are:

- 11 1 Task 11/13 Selected Alternate, Increase Capac.
- 21 2 Temporary Water Storage Terminal Ponds

I. Wastewater Recycle

Total change in Offsite Water Discharge:	-76.2 MGY
Minimum change with confidence factor:	-61.0 MGY
Approximate Total Cost (\$ millions):	1.67
Average environmental impact code (0-10)	2.00

II. Storm Water

Total change in Offsite Water Discharge:	-80.7 MGY
Minimum change with confidence factor:	-40.3 MGY
Approximate Total Cost (\$ millions):	16.30
Average environmental impact code (0-10)	8.00

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

Total All Groups

Total change in Offsite Water Discharge: -156.9 MGY
Minimum change with confidence factor: -101.3 MGY
Approximate Total Cost (\$ millions): 17.97
Average environmental impact code (0-10) 5.00

*** NO ACTIONS FOUND WHICH OPPOSE THIS GOAL.

Evaluation Complete. New Goal? (Y/N):

N

n

•

.

APPENDIX D

ZOWD/COMB User's Manual

This Appendix contains information needed for the efficient use of the ZOWD model. It assumes that the user has a basic understanding of DOS machines, as well as dBase III+.

The model is meant to be used with information derived from the other subordinate tasks of the Zero-Offsite Water Discharge Study, but any plans affecting water at the Rocky Flats Plant can be included in the data base. The information required from the subordinate studies (named "Tasks") is described in Section 3.3 of this report. The data are entered and maintained in a dBase file which is used as input for the ZOWD programs. The COMB program is used to determine the possible alternative combinations to be evaluated in ZOWD. The ZOWD program is described in Section 4.1 of this report, and it includes a goal-setting stage followed by analysis of the combinations of alternatives to select an optimal set of task alternatives for implementation. The process can be summarized as follows:

- Enter basic Task information into a dBase III+ file called the Task Input File. Each Task can have one or more "Task/alternatives" which represent different approaches to solving the problem at hand.
- Edit the file periodically as necessary to include new or changed information.
- Run program COMB to determine the possible sets of relevant combinations of Task/alternatives which are to be analyzed in program ZOWD.
- Run program ZOWD. This interactive program requests the user to select from a list (or provide) a basic goal and several objectives to be evaluated. The program tests the data in the Task Input File against these objectives and selects an optimal combination of Tasks to be implemented.
- Re-run ZOWD as often as necessary to test different objective-sets.

Detailed instructions for performing these tasks follow.

Revision: 0

D.1 Building/editing the database file

Before the COMB and ZOWD programs can be used, a dBase III+ file containing the information described in Section 3.3 of this report must be created. The following steps can be used to create and/or edit that file:

- 1. Enter DBASE 3+ and the HELP Screen.
- 2. "Organize", "Copy", to create a Backup DBASE file before beginning to enter or edit data. Keep the working copy of the file named ZOWDTAS2.DBF in order to use the customized screen for appending and editing (ZOWDTASK.FMT).
- 3. "Esc" to leave the HELP Screen.
 - at "." prompt, type SET.
 - under "Options", highlight "Bell", and hit return to set off.
 - "Esc" to return to the HELP Screen.
- 4. Highlight "Setup", "Database File", enter.
 - go to location of DBASE File, eg. C:\DBASE\ZOWDTAS2.DBF
 - indexed, "No"
 - file is now loaded and ready for use.
- 5. Highlight "Setup", "Format for Screen", enter.
 - go to location of customized input screen, eg. C:\DBASE\ZOWDFORM.FMT

As stated above, the custom screen ZOWDFORM.FMT only works with an input file named ZOWDTAS2.DBF. It is necessary to use this name for the working file in order to use the custom screen or replicate the custom screen again for the name of the working file you are using.

- 6. Go to "Update"
 - "Append" to add new records at bottom of file. (Must re-sort the file in order to place in another location within file.)
 - "Edit" to modify record. (It is usually helpful to "Point" to the area of the file where you wish to work prior to entering "Edit" as it takes a long time to Scroll long distances in "Edit" mode. ****Very Important*** Use "Ctrl End" when

finished with the "Edit" mode to Save the changes made. "Esc" at the end of the changes will not save any of the editing.

- "Display" to view file.
- "Browse" to scroll and edit file, not in customized screen.

Other useful commands within the edit mode are as follows:

- "Replace" for global replacements of individual files. (Select fields, scope of the replacement, and execute.)
- "Delete" to mark records for deletion.
- "Recall" to restore specified records marked for deletion.
- "Pack" to permanently erase records marked for deletion.
- 7. "Position" to quickly move in file.
- 8. After all editing, additions, etc., are complete, then:
 - "Organize", "Sort" on TASK, ALT, and TIME to organize ZOWDTAS2.DBF for input into ZOWD Model. (It may be a good idea to save to another name, exit and rename the working copy with a backup name, and then rename the sorted set as ZOWDTAS2.DBF)
 - "Esc" to leave the HELP Screen.
 - At "." Prompt, type **COPY TO** <Filename> **TYPE SDF**, return. eg.- . COPY TO C:\RFPAS\ZOWDTAS2\SDF TYPE SDF
- 9. File created (eg.- C:\RFPASI\ZOWDTAS2.SDF) is then an ASCII text file which can be read by the ZOWD program. In addition, using file, it can replace the data in C:\RFPASI\ZOWDTAS2.WP5 for printing out a complete listing of the data set.

D.2 Program COMB

Program COMB creates a disk file of Task/alternative combinations to be used by ZOWD. To run COMB, follow these steps:

- 1. It is normally preferable to change to the directory containing the Task 23 database files and programs.
- 2. Type CLS
- 3. Type COMBY. The program is interactive. It will request the names of input and output files. Simply hit Enter if the default files ZOWDCOMB.DAT and ZOWDIN2.DAT are required.

D.3 Program ZOWD

Program ZOWD evaluates combinations of Task/alternatives according to the requirements of goals and objectives defined by the user. The program cannot be run unless the dBase input file and combinations file have been created previously as described in sections D.1 and D.2. The ZOWD program is interactive. To run, follow these steps:

- 1. At the DOS prompt, type **ZOWD**.
- 2. The first question asked is: "Use Default Goal Data?". This refers to an initial set of goals and objectives built into ZOWD. When running ZOWD for the first time, you must type Y, since otherwise the program will search for a file named ZOWDSYST which contains a customized set of goals and objectives. This file is written at the end of each ZOWD run. A customized set of goals and objectives can be achieved by answering Y when the program asks "Do you wish to change these, or add a goal?". This customized goal set will be saved automatically in file ZOWDSYST.

 \mathbf{E}

.

•

APPENDIX E

ZOWD DBASE INPUT FILE

Structure for database: C:\RFPASI\ZOWDTAS2.SDF

Number of data records: 108 Date of last update: 4/23/91

T A NAME A L S T K	T D T I // M A R	МСУ €	MGY	•	MGY	١	MGY	•	MGY	•	MGY	•	MGY	\ MII	L R	INFLUENCING TASKS				
1 OSanitary Sewer	NOWD T	0.0 100	0.0	٥	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.	00 0	0 00B 0 00B 0 00B 0 00B	0 400 0 400 0	000 0 000	0.00	0 00B
1 OSanitary Sewer	5YR D T	0.0 0	0.0	0	0.0	0	0.0	٥	0.0	0	0.0	٥	0.0	0 0.		0 00B 0 00B 0 00B 0 00B		00B 0 00B		
1 OSanitary Sewer	LT D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0		00 0			00B 0 00B		
2 OStorm Sewer Infiltration/Inflow and Exfiltration	NOWD T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	٥	0.0	0 0.				00B 0 00B		
2 OStorm Sewer Infiltration/Inflow and Exfiltration	SYR D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.				00B 0 00B		0 00B
2 OStorm Sewer Infiltration/Inflow and Exfiltration	LT DT	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.				00B 0 00B		0 00B
3 ONon-Point Source Assessment	NOWD T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.	00 0		0 00В 0 00В 0			0 00B
3 ONon-Point Source Assessment	SYR D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.	00 0			00B 0 00B		0 00B
3 ONon-Point Source Assessment	LT D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	٥	0.0	0 0.	00 O	0 00B 0 00B 0 00B 0 00B				0 00B
4 OWater Yield/Quality; Walnut, Woman Watersheds	NOWD T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.				00B 0 00B		0 00B
4 OWater Yield/Quality; Walnut, Woman Watersheds	5YR D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.	00 0	O OOB O OOB O OOB		00B 0 00B		0 00B
4 OWater Yield/Quality; Walnut, Woman Watersheds	LT D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 0	0 00B 0 00B 0 00B 0 00B	0 00B 0 00B 0	00В 0 00В	0 00В	0 00B
5 ORainfall/Runoff Relationships	NOWD T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.	00 0	0 00B 0 00B 0 00B 0 00B	0 00B 0 00B 0	00B 0 00B	0 00B	0 00B
5 ORsinfall/Runoff Relationships	5YR D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.	00 0	0 00B 0 00B 0 00B 0 00B	0 00B 0 00B 0	00B 0 00B	0 00B	0 00B
5 ORainfall/Runoff Relationships	LT D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 0	0 00B 0 00B 0 00B 0 00B	O 00B O 00B O	00B 0 00B	0 00В	0 00B
6 OStorm runoff quantities for various design events	NOWD T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.6	00 0	0 00B 0 00B 0 00B 0 00B	0 00B 0 00B 0	00B 0 00B	0 00В	0 00B
6 OStorm runoff quantities for various design events	SYR D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 0	0 00B 0 00B 0 00B 0 00B	0 00B 0 00B 0	00B 0 00B	0 00B	0 00B
6 OStorm runoff quantities for various design events	LT D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 0	O OOB O OOB O OOB	0 00B 0 00B 0	00B 0 00B	0 00В	0 00В
7 OSolar Pond Interceptor Trench; GW Management Study	y NOWA T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 0	2 04A 0 000 0 00B 0 00B	0 00B 0 00B 0	00В 0 00В	0 00в	0 00B
7 OSolar Pond Interceptor Trench; GW Management Study	y5YR A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0 0	2 04A 0 00B 0 00B 0 00B	0 00B 0 00B 0	00B 0 00B	0 00B	0 00B
7 OSolar Pond Interceptor Trench; GW Management Study	yLT A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 0	2 04A 0 00B 0 00B 0 00B	0 00B 0 00B 0	00B 0 00B	0 00B	0 00B
8 OPresent Landfill Area GW/Surf. Water Collection	NOWA T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 0	5 04A 15 05A 21 04A 21 05A	0 00B 0 00B 0	00B 0 00B	0 00B	0 00B
8 OPresent Landfill Area GW/Surf. Water Collection	SYR A T	3.7 80	0.0	0	0.0	0	-1.7	80	5.4	80	0.0	0	0.0	0 0.6	00 0	5 04a 15 05a 21 04a 21 05a	0 00B 0 00B 0	00B 0 00B	0 00B	0 00B
8 OPresent Landfill Area GW/Surf. Water Collection	LT A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 0	5 04a 15 05a 21 04a 21 05a	0 00B 0 00B 0	00B 0 00B	0 00В	0 00B
9 ODesign Recurrence Intervals Study	NOWD T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 0	O DOB O OOB O OOB	0 00B 0 00B 0	00B 0 00B	0 00в	0 00B
9 ODesign Recurrence Intervals Study	SYR D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0 0	0 00B 0 00B 0 00B 0 00B	0 00B 0 00B 0	00B 0 00B	0 00B	0 00B
9 ODesign Recurrence Intervals Study	LT D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0 0	0 00B 0 00B 0 00B 0 00B	0 00B 0 00B 0	00B 0 00B	0 00B	0 00B
10 OSanitary Treatment Plant Bwaluation Study	NOWA T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0 0	0 00B 0 00B 0 00B 0 00B	0 GOO GOO O	00B 0 00B	0 00B	0 00В
10 OSanitary Treatment Plant Evaluation Study	SYR A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	o o	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00B 0 00B 0	00B 0 00B	0 00B	0 00B
10 OSanitary Treatment Plant Bvaluation Study	LT A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0 0	0 00B 0 00B 0 00B 0 00B	0 00B 0 00B 0	000 0 000	0 00B	0 00B
11 OProcess Water Reuse Potential Study	NOWA T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0 0	8 06D 15 01A 18 04D 19 16D 1	9 06D 0 00B 0	00B 0 00B	0 00B	0 00B

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

T A NAME A L S T K	T D T I // M A R B	MGY %	MGY	•	MGY		MGY	•	MGY	١	MGY		MGY	∜ MIL	В	INFLUENCING TASKS
11 OProcess Water Reuse Potential Study	5YR A T	-74.0 80	-74.0	80	-74.0	80	0.0	0	0.0	0	-74.0	D 80	0.0	0 1.6	7 2	8 06D 15 01A 18 04D 19 16C 19 06D 0 00B 0 00B 0 00B 0 00B
11 OProcess Water Reuse Potential Study	LT A T	0.0 0	0.0	0	0.0	0	0.0	٥	0.0	0	0.0	0 0	0.0			8 06D 15 01A 18 04D 19 16C 19 06D 0 00B 0 00B 0 00B 0 00B 0 00B
11 1Task 11/13 Selected Alternate, Increase Capac.	NOWA T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0		8 06D 15 01A 18 04D 19 16C 19 06D 19 06C 0 00B 0 00B 0 00B 0 00B
11 1Task 11/13 Selected Alternative, Increase Capac.	5YR A T	-76.2 80	-76.2	80	-76.2	80	0.0	0	0.0	٥	-76.2	2 80	0.0	0 1.6		8 06D 15 01C 18 04D 19 16C 19 06D 19 06C 0 00B 0 00B 0 00B 0 00B
11 1Task 11/13 Selected Alternate, Increase Capac.	LT A T	0.0 100	0.0	0	0.0	0	0.0	٥	0.0	0	0.0	0	0.0	0 0.0		8 06D 15 01A 18 04D 19 16C 19 06D 19 06C 0 00B 0 00B 0 00B
11 2Task 11/13 Selected Alternate, Decreased Capac.	NOWA T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	٥	0.0	0	0.0	0 0.0		8 06D 15 01A 18 04D 19 16C 19 06D 19 06C 0 00B 0 00B 0 00B
11 2Task 11/13 Selected Alternate, Reduced Capacity	5YR A T	-63.8 80	-63.8	80	-63.8	80	0.0	0	0.0	0	-63.6	80	0.0	0 1.6		8 06D 15 01A 18 04D 19 16C 19 06D 19 06C 0 00B 0 00B 0 00B
11 2Task 11/13 Selected Alternate, Decrease Capac.	LT A T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0		
12 OReverse Osmosis and Mechanical Evaporation Study	NOWA T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0 0	0 00B
12 OReverse Osmosis and Mechanical Evaporation Study	5YR A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0 0	0 00B
12 OReverse Osmosis and Mechanical Evaporation Study	LT A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0	0 00B
13 Ofreated Sewage/Process Wastewater Recycle Study	NOWA T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0	0 00B
13 Ofreated Sewage/Process Wastewater Recycle Study	SYR A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0	0 00B
13 OTreated Sewage/Process Wastewater Recycle Study	LT A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0	0 00B
14 OSurface-Water and Groundwater Rights Study	NOWD T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0	0 00B
14 OSurface-Water and Groundwater Rights Study	5YR D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	• •	0.0	0 0.0	0	0 00B
14 OSurface-Water and Groundwater Rights Study	LT DT	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	• 0	0.0	0 0.0	0	0 00B
15 OSurface-Water Evaporation Study	NOWA T	0.0 0	0.0	0	0.0	0	0.0	٥	0.0	0	0.0	0	0.0	0 0.0	0	11 01A 12 01A 13 01A 21 01A 0 00B 0 00B 0 00B 0 00B 0 00B
15 OSurface-Water Evaporation Study	5YR A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0	11 01A 12 01A 13 01A 21 01A 0 00B 0 00B 0 00B 0 00B 0 00B
15 OSurface-Water Evaporation Study	LT A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0	11 01A 12 01A 13 01A 21 01A 0 00B 0 00B 0 00B 0 00B 0 00B
16 OWater Yield/Quality other trib. sources to Lakes	NOWD T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	0	0 00B
16 OWater Yield/Quality other trib. sources to Lakes	SYR D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0	0 00B
16 OWater Yield/Quality other trib. sources to Lakes	LT D T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0	0 00B
17 OAlternatives to Zero-Discharge	NOWA T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0	0 00B
17 Ohlternatives to Zero-Discharge	SYR A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0	0 00B
17 OAlternatives to Zero-Discharge	LT A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0	0 00B
18 ODrain Study	NOWA T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0	0 00B
18 ODrain Study	SYR A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0	0 00B
18 ODrain Study	LT A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0	0 00B
19 OWaste Minimization Study	NOWA T	0.0 100	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	1	0 00B
19 OWaste Minimization Study	SYR A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	-7.9	75	0.0	0 0.00	0	0 00B
19 OWaste Minimization Study	LT A T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0	0 00B
19 lTask 19 With Increased Load to STP	NOWA T	0.0 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0	0 000 0 000 0 000 0 000 0 000 0 000 0 000 0

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

T A NAME

T A NAME A L S T K	T D T I // M A R B	MGY	& MGY	•	MGY	•	MGY	•	MGY	٠	MGY	•	MGY	• MIL	B INFL	LUENCING TASKS
19 lTask with Increased Load to STP	5YR A T	0.0	0 0.0	0	0.0	0	0.0	0	0.0	٥	2.3	75	0.0	0 0.00	0 0 00	000 0 000 0 000 0 000 0 000 0 000 0 000 0
19 1Task 19 with Increased Load to STP	LT A T	0.0	0 0.0	0	0.0	٥	0.0	0	0.0		0.0	0	0.0	0 0.00		
19 2Task 19 with Decreased Load to STP	NOWA T	0.0	0 0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00		000 0 000 0 000 0 000 0 000 0 000 0 000 0
19 2Task 19 with Decreased Load to STP	5YR A T	0.0	0 0.0	0	0.0	0	0.0	0	0.0	0	-10.2	75	0.0	0 0.00		000 0 000 0 000 0 000 0 000 0 000 0 000 0
19 2Task 19 With Decreased Load to STP	LT AT	0.0	0 0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00		
20 ODomestic and Process Water Pipeline Leak Study	NOWA T	0.0	0 0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	00B 0 00B
20 ODomestic and Process Water Pipeline Leak Study	5YR A T	0.0	0 0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00		00B 0 00B
20 ODomestic and Process Water Pipeline Leak Study	LT A T	0.0	0 0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	OB 0 00B
21 OTemporary Water Storage - New Off-Channel	NOWA T	0.0 10	0 0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	
21 OTemporary Water Storage - New Off Channel	5YR A T	-121.5 5	0 -44.1	50	0.0	0	-3.3	50	-40.8	50	-77.4	50	0.0	0 12.80	6 11 06	6A 8 04A 11 16A 11 26A 26 04A 15 01A 0 00B 0 00B 0 00B
21 OTemporary Water Storage - New Off-Channel	LT A T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	0B 0 00B
21 1Temporary Water Storage - Great Western	NOWA T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	00 0 000 0 000 0 000 0 000 0 000 0 000 0
21 lTemporary Water Storage - Great Western	SYR A T	-126.3 5	0 -80.7	50	0.0	0	-3.3	50	-45.6	50	-77.4	50	0.0	0 91.10	9 11 06	6A 8 04A 11 16A 11 26A 26 04A 15 01A 0 000 0 000 0 000 0 000
21 lTemporary Water Storage - Great Western	LT A T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	00 0 000 0 000 0 000 0 000 0 000 0 000 0
21 2Temporary Water Storage - Terminal Ponds	NOWA T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	00 0 000 0 000 0 000 0 000 0 000 0 000 0
21 2Temporary Water Storage - Terminal Ponds	5YR A T	-121.5 5	0 -80.7	50	0.0	0	-3.3	50	-40.8	50	-77.4	50	0.0	0 16.30	8 11 06	6A 8 04A 11 16A 11 24A 26 04A 15 01A 0 000 0 000 0 000 0 000
21 2Temporary Water Storage - Terminal Ponds	LT A T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	00 0 000 0 000 0 000 0 000 0 000 0 000 0
22 OGroundwater Recharge Study	NOWA T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	0B 0 00B
22 OGroundwater Recharge Study	5YR A T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	0B 0 00B
22 OGroundwater Recharge Study	LT A T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	OB 0 00B
23 OWater Resources Management Study	NOWD T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	OB 0 00B
23 OWater Resources Management Study	SYR D T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	OB 0 00B
23 OWater Resources Management Study	LT D T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	OB 0 00B
24 OBypass Upstream Flows Around Rocky Flats Plant	NOWA T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 007	OB 0 00B
24 OBypass Upstream Flows Around Rocky Flats Plant	5YR A T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 001	OB 0 00B
24 OBypass Upstream Flows Around Rocky Flats Plant	LT A T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 00	OB 0 00B
25 OStudy of Downstream Erosion Potential	NOWD T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 002	OB 0 00B
25 OStudy of Downstream Brosion Potential	5YR D T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 001	OB 0 00B
25 OStudy of Downstream Brosion Potential	LT D T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 001	OB 0 00B
26 OFeasibility of Groundwater Cutoff/Diversion	NOWA T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 002	OB 0 00B
26 OFeasibility of Groundwater Cutoff/Diversion	5YR A T	0.0	0.0	٥	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 001	OB 0 00B
26 OFeasibility of Groundwater Cutoff/Diversion	LT A T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 001	OB 0 00B
27 OWaste Generation Treatment Study	NOWA T	0.0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.00	0 0 001	OB 0 00B

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

T A NAME A L S T K	T D T I // M A R B	MGY	*	MGY	8	MGY	•	MGY	•	MGY	•	MGY	•	MGY	▼ MIL	. Е	3 INFLUE	NCING T	asks								
27 OWaste Generation Treatment Study	SYR A T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.	00	0 0 00B	0 00B	0 00В	0 00B	0 00B	0 00B	0 00B	0 00в	0 00B	0 00B	
27 OWaste Generation Treatment Study	LT A T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.	00	0 0 00В	0 00B	0 00В	0 00B							
28 OAugmentation Plan for the Rocky Flats Plant	NOWD T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00	0 0 00В	0 00B	0 00B	0 00В	0 00B	0 00в	0 00B	0 00B	0 00B	0 00B	
28 OAugmentation Plan for the Rocky Flats Plant	SYR D T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00	0 0 00в	0 00B	0 00B	0 00B	0 00B	0 00B	0 00B	0 00B	0 00B	0 00B	
28 OAugmentation Plan for the Rocky Plats Plant	LT D T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.6	00	0 0 00в	0 00B	0 00B	0 00B	0 00B	0 00B	0 00в	0 00В	0 00B	0 00B	
29 ONon-tributary Groundwater Study	NOWD T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00	0 0 00в	0 00B	0 00B	0 00B	0 00B	0 00B	0 00B	0 00B	0 00B	0 00в	
29 ONon-tributary Groundwater Study	SYR D T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00	0 0 00В	0 008	0 00B								
29 ONon-tributary Groundwater Study	LT D T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00	0 0 00в	0 00B	0 00В	0 00B							
30 OConsolidation and Zero-Discharge Plan	NOWA T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 (0 0 00в	0 00B	0 00B	0 00B	0 00В	0 00B					
30 OConsolidation and Zero-Discharge Plan	SYR A T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0 0.0	00 (0 0 00в	0 00B	0 ООВ	0 00B	0 00B	0 00B	0 00B	0 00в	0 00B	0 00В	
30 OConsolidation and Zero-Discharge Plan	LT A T	0.0	0	0.0	0	0.0	0	0.0	0	0.0	٥	0.0	0	0.0	0 0 0	00 1	0 0 00B	0 00B	0.008	0.008	0.00	0.000	0.000	0.000	0 000	0.000	

Study of Water Resource Management; Zero-Offsite Water-Discharge Study

-

APPENDIX F WATER MANAGEMENT SUMMARY DATA INPUT FORMS

Table F-1

Water Management Summary for Task 1:
Sanitary Sewer Infiltration/Inflow and Exfiltration Study

	Dimension			Time Ele	ement	" 1/2 	
		Immed FY	diate 91	Short- (5 yea		Long- (beyo	
1.	Data vs. Action	Da	ta				-
2.	Technical vs. Polit./Regulatory	Techr	nical				_
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1 All Water	0	100				
	3.2 Total Wastewater						
	3.3 Point-source discharges						
	3.4 Sources to groundwater						
	3.5 Surface runoff						
	3.6 Domestic waste						
	3.7 Misc. losses						
4.	Financial Impact		0				
5.	Environmental Impact		0				
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	3	30				
7.	Input from WR Plan	_	-				
8.	Input from Monitoring	ASI,	EMAD				

Table F-1 (Continued)

Water Management Summary for Task 1: Sanitary Sewer Infiltration/Inflow and Exfiltration Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			
!			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows
 Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-2

Water Management Summary for Tasks 2, 3: Non-point Source Assessment and Storm-Sewer Infiltration/Inflow and Exfiltration Study

	Dimension			Time Ele	ement		
		Immed FY	liate 91	Short- (5 yea		Long- (beyo	
1.	Data vs. Action	Da	ta				_
2.	Technical vs. Polit./Regulatory	Techr	nical	- -	· · · · · · · · · · · · · · · · · · ·		-
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1 All Water	0	100				
	3.2 Total Wastewater						
	3.3 Point-source discharges						
	3.4 Sources to groundwater						
	3.5 Surface runoff						
	3.6 Domestic waste						
	3.7 Misc. losses						
4.	Financial Impact		0				
5.	Environmental Impact		0				
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	4,5,1	.3,16, ,30				
7.	Input from WR Plan	-					
8.	Input from Monitoring	ASI,	EMAD				

Table F-2 (continued)

Water Management Summary for Tasks 2, 3: Non-point Source Assessment and Storm-Sewer Infiltration/Inflow and Exfiltration Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			
	····		

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 - Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

FINAL Date: May 28, 1991

Table F-3

Water Management Summary for Task 4: Water-Yield and Water-Quality Study of Walnut Creek and Woman Creek Watersheds

	Dimension			Time Ele	ement		
		Immed FY		Short- (5 yea		Long- (beyo	
1.	Data vs. Action	Dat	ta				-
2.	Technical vs. Polit./Regulatory	Techn	ical				-
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1 All Water	0	100				
	3.2 Total Wastewater						
	3.3 Point-source discharges						
1	3.4 Sources to groundwater	- -					
	3.5 Surface runoff						
	3.6 Domestic waste						
	3.7 Misc. losses						
4.	Financial Impact	()				
5.	Environmental Impact	()				
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	14,2	8,30				
7.	Input from WR Plan		_				
8.	Input from Monitoring	2A	SI				

Table F-3 (continued)

Water Management Summary for Task 4: Water-Yield and Water-Quality Study of Walnut Creek and Woman Creek Watersheds

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			
	•		
1			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-4

Water Management Summary for Task 5:
Confirmation of Rainfall/Runoff Relationships Study

	Dimension			Time Ele	ement		
		Immed FY		Short- (5 yea		Long- (beyo	
1.	Data vs. Action	Da	ta				-
2.	Technical vs. Polit./Regulatory	Techr	nical				-
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1 All Water	0	100				
	3.2 Total Wastewater						
	3.3 Point-source discharges						
	3.4 Sources to groundwater						
	3.5 Surface runoff						
	3.6 Domestic waste						
	3.7 Misc. losses						
4.	Financial Impact	()				
5.	Environmental Impact		0				
6.	Input from/to Other Tasks (enumerate):	3	0				
7.	Input from WR Plan	_	_				
8.	Input from Monitoring	A	SI		- · · · · · · · · · · · · · · · · · · ·		

Table F-4 (continued)

Water Management Summary for Task 5: Confirmation of Rainfall/Runoff Relationships Study

Reporting Dimensions Supplement Task Interrelationships

r			
Task Providing Input	System Affected	Relationship	Remarks
None			
		·	

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task Precludes Further Reduction in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-5

Water Management Summary for Task 6:
Storm Runoff Quantity for Various Design Events Study

	Dimension		Time Element					
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)		
1.	Data vs. Action	Dat	ta				-	
2.	Technical vs. Polit./Regulatory	Techr	ical		·		_	
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	
	3.1 All Water	0	100					
	3.2 Total Wastewater							
	3.3 Point-source discharges							
	3.4 Sources to groundwater							
	3.5 Surface runoff							
	3.6 Domestic waste							
	3.7 Misc. losses							
4.	Financial Impact		0					
5.	Environmental Impact	0						
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	3	0					
7.	Input from WR Plan							
8.	Input from Monitoring	-	-					

Table F-5 (continued)

Water Management Summary for Task 6: Storm Runoff Quantity for Various Design Events Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None		-	
Codes:	<u> </u>		

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task Precludes Further Reduction in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991
Revision: 0

F-11

Table F-6

Water Management Summary for Task 7:
Solar Pond Interceptor Trench System Ground-Water Management Study

	Dimension			Time Ele	ement		
			Immediate FY 91		Short-term (5 years)		term
1.	Data vs. Action	Act	ion				-
2.	Technical vs. Polit./Regulatory	Techr	nical				-
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1 All Water	0	100				
	3.2 Total Wastewater						
	3.3 Point-source discharges						
	3.4 Sources to groundwater						
	3.5 Surface runoff						
	3.6 Domestic waste						
	3.7 Misc. losses						
4.	Financial Impact		0				
5.	Environmental Impact		0				
6.	Input from/to Other Tasks (enumerate):	30					
7.	Input from WR Plan						
8.	Input from Monitoring						

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-6 (continued)

Water Management Summary for Task 7: Solar Pond Interceptor Trench System Ground-Water Management Study

Reporting Dimensions Supplement Task Interrelationships

····			<u>, , , , , , , , , , , , , , , , , , , </u>
Task Providing Input	System Affected	Relationship	Remarks
12	4	A	

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task Precludes Further Reduction in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-7

Water Management Summary for Task 8:

Present Landfill Area Groundwater/Surface Water Collection Study

Dimension	Time Element						
	Immediate FY 91		Short-term (5 years)		Long-term (beyond)		
1. Data vs. Action	Act:	ion	Acti	on	Acti	on	
2. Technical vs. Polit./Regulatory	Techn	ical	Regula	tory	Regula	tory	
3. System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	
3.1 All Water	0	100	+3.7	80	+3.7	80	
3.2 Total Wastewater							
3.3 Point-source discharges							
3.4 Sources to groundwater			-1.7	80	-1.7	80	
3.5 Surface runoff			+5.4	80	+5.4	80	
3.6 Domestic waste							
3.7 Misc. losses							
4. Financial Impact	()	?		?		
5. Environmental Impact	()	2		2	· · · · · · · · · · · · · · · · · · ·	
6. Input from/to Other Tasks (enumerate):	10,11,12, 13,14,26, 27,28,30		same		same		
7. Input from WR Plan	_	_		_		_	
8. Input from Monitoring	EMAD		EM#	Z D	EMAD		

Table F-7 (continued)

Water Management Summary for Task 8: Present Landfill Area Groundwater/Surface Water Collection Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
15	4,5	A	
21	4,5	A	
	· · · · · · · · · · · · · · · · · · ·		

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task Precludes Further Reduction in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-8

Water Management Summary for Task 9:
Design Recurrence Intervals Study

	Dimension		Time Element					
			Immediate FY 91		Short-term (5 years)		term ond)	
1.	Data vs. Action	Da	ta				-	
2.			nical		·		-	
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	
	3.1 All Water	0	100					
	3.2 Total Wastewater							
	3.3 Point-source discharges							
	3.4 Sources to groundwater							
	3.5 Surface runoff							
	3.6 Domestic waste							
	3.7 Misc. losses							
4.	Financial Impact		0					
5.	Environmental Impact		0					
6.	Input from/to Other Tasks (enumerate):	6	, 30					
7.	Input from WR Plan							
8. Input from Monitoring								

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-8 (continued)

Water Management Summary for Task 9: Design Recurrence Intervals Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task Precludes Further Reduction in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991

Table F-9
Water Management Summary for Task 10:
Sanitary Treatment Plant Evaluation Study

	Dimension				Time Ele	ment		
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)		
1.	Data vs. A	ction	Acti	Lon	Acti	on	Acti	on
2.	Technical Polit./Reg		Techn	ical	Techni	cal	Techn	ical
3.	System Imp (Change in offsite; p confidence	MGY going lus	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1 All	Water	0	100	0	100	0	100
	3.2 Tota	l Wastewater						
		t-source harges						
		ces to indwater						
	3.5 Surf	ace runoff						
	3.6 Dome	stic waste						
	3.7 Misc	:. losses						
4.	Financial	Impact	c)	\$2.6 M		?	
5.	Environmer	ntal Impact	()	0		0	
6.	6. Input from/to Other Tasks (enumerate):		11,12,13, 30		same		same	
7.	Input from	n WR Plan						
8.	Input from	n Monitoring	EMAD,		EMAD,	CDH	EMAD, CDH	

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991

F-18

Table F-9 (continued)

Water Management Summary for Task 10: Sanitary Treatment Plant Evaluation Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-10

Water Management Summary for Tasks 11/13 (Alternative 0):
Treated Sewage/Process Wastewater Recycle and Reuse Study

	Dimension		Time Element					
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)		
1.	Data	vs. Action	Da	ta	Acti	on	Act	ion
2.	Technical vs. Polit./Regulatory		Techr	nical	Techn	ical	Techn	ical
3.	(Chanoffsi	m Impact ge in MGY going te; plus dence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1	All Water	0	100	-74	80	?	
	3.2	Total Wastewater			-74	80		
	3.3	Point-source discharges			-74	80		
	3.4	Sources to groundwater			0			
	3.5	Surface runoff			0			
	3.6	Domestic waste			-74	80		
	3.7	Misc. losses			0			
4.	Finan	cial Impact		0	\$1.67 M		,	?
5.	Envir	onmental Impact		0	2		:	2
6. Input from/to Other Tasks (enumerate):		10,12,30		10,12,30		10,12,30		
7.	Input	from WR Plan			***			
8.	Input	from Monitoring	-	-		-		

Table F-10 (continued)

Water Management Summary for Tasks 11/13 (Alternative 0): Treated Sewage/Process Wastewater Recycle and Reuse Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
8	1,2,3,6	D	STP Alternate
15	1-7	Α	
18	4	D	
	· · · · · · · · · · · · · · · · · · ·		
 			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows
 Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-10 (continued)

Water Management Summary for Tasks 11/13 (Alternative 1): Treated Sewage/Process Wastewater Recycle and Reuse Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
8	1,2,3,6	D	STP Alternate
15	1-7	A	
18	4	D	
19	6	С	
19	6	D	
	VIII.		

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task Precludes Further Reduction in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991

Revision: 0

F-23

Table F-10 (continued)

Water Management Summary for Tasks 11/13 (Alternative 2): Treated Sewage/Process Wastewater Recycle and Reuse Study

Dimension		Time Element						
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)		
1. Data vs. Action		Data		Action		Action		
2.	Technical vs. Polit./Regulatory	Technical		Technical		Technical		
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	
	3.1 All Water	0	100	-63.8	80	?		
	3.2 Total Wastewater			-63.8	80			
	3.3 Point-source discharges			-63.8	80			
	3.4 Sources to groundwater			0				
	3.5 Surface runoff			0				
	3.6 Domestic waste			-63.8	80			
	3.7 Misc. losses			0	,			
4.	Financial Impact	0		\$1.67 M ?		?		
5.	Environmental Impact	0		2		2		
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	10,12,30		10,12,30		10,12,30		
7.	Input from WR Plan							
8.	8. Input from Monitoring		-		•	_		

Table F-10 (continued)

Water Management Summary for Tasks 11/13 (Alternative 2): Treated Sewage/Process Wastewater Recycle and Reuse Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
8	1,2,3,6	D	STP Alternate
15	1-7	A	
18	4	D	
19	6	С	
19	6	D	
	-		

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task Precludes Further Reduction in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-11

Water Management Summary Task 12:
Reverse Osmosis and Mechanical Evaporation Study

Dimension				Time Ele	ement		
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)	
1.	1. Data vs. Action		Action		Action		.on
2.	Technical vs. Polit./Regulatory	Regulatory		Regulatory		Regulatory	
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1 All Water	0	100	0	100	0	100
	3.2 Total Wastewater						
	3.3 Point-source discharges						
	3.4 Sources to groundwater						
	3.5 Surface runoff						
	3.6 Domestic waste						
	3.7 Misc. losses						
4.	Financial Impact	0		?		?	
5.	Environmental Impact	0		2		2	
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	11,13,		same		same	
7.	Input from WR Plan						
8. Input from Monitoring		-	-		_	-	_

Table F-11 (continued)

Water Management Summary Task 12: Reverse Osmosis and Mechanical Evaporation Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			
	-		

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

F-27

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

FINAL Date: May 28, 1991

Table F-12

Water Management Summary Task 14:
Surface-Water and Ground-Water Rights Study

	Dimension		Time Element						
			diate 91				Long-term (beyond)		
1.	Data vs. Action	Da	ta	Data		Dat	Data		
2.	Technical vs. Polit./Regulatory	Regul	atory	Regula	tory	Regula	atory		
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)		
	3.1 All Water	0	100	0	100	0	100		
	3.2 Total Wastewater								
	3.3 Point-source discharges								
	3.4 Sources to groundwater								
	3.5 Surface runoff								
	3.6 Domestic waste								
	3.7 Misc. losses								
4.	Financial Impact		0 ?			?			
5.	Environmental Impact	0		2		2			
6.	Input from/to Other Tasks (enumerate):	11,13, 30		same		same			
7.	Input from WR Plan			-					
8.	8. Input from Monitoring			-	_	-			

Water Management Summary Task 14: Surface-Water and Ground-Water Rights Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 - Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL
Date: May 28, 1991
Revision: 0

F-29

Table F-13

Water Management Summary Task 15:
Surface-Water Evaporation Study

Dimension		Time Element					
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)	
1.	Data vs. Action	Act	ion	Acti	on	Acti	on
2.	Technical vs. Polit./Regulatory	Technical		Techni	Technical		ical
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1 All Water	0	100	0	100	0	100
	3.2 Total Wastewater						
	3.3 Point-source discharges						
	3.4 Sources to groundwater						
	3.5 Surface runoff						
	3.6 Domestic waste						
	3.7 Misc. losses						
4.	Financial Impact		0	?		?	
5.	Environmental Impact		0	2			2
6.	Input from/to Other Tasks (enumerate):	11,13,		same		same	
7.	Input from WR Plan						
8.	Input from Monitoring						

Water Management Summary Task 15: Surface-Water Evaporation Study

Reporting Dimensions Supplement Task Interrelationships

			
Task Providing Input	System Affected	Relationship	Remarks
11/13	1	A	
12	1	A	
13	1	A	
21	1	A	
Cadaa		* 	<u> </u>

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task Precludes Further Reduction in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
- Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-14

Water Management Summary Task 16: Water-Yield and Water Quality Study of Other Sources Tributary to Standley Lake and Great Western Reservoir

	Dimension		Time Element						
			diate 91	Short-term (5 years)		Long-term (beyond)			
1.	Data vs. Action	Da	ta						
2.	Technical vs. Polit./Regulatory	Tech	nical						
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)		
	3.1 All Water	0	100						
	3.2 Total Wastewater								
	3.3 Point-source discharges								
	3.4 Sources to groundwater								
	3.5 Surface runoff								
	3.6 Domestic waste								
	3.7 Misc. losses								
4.	Financial Impact		0						
5.	Environmental Impact		0						
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	4,30							
7.	Input from WR Plan								
8.	Input from Monitoring	יט	USGS						

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Water Management Summary Task 16: Water-Yield and Water Quality Study of Other Sources Tributary to Standley Lake and Great Western Reservoir

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task

Causes Increase in Present Task

E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-15

Water Management Summary Task 17:
Alternatives to Zero Discharge Study

_	Dimension		Time Element						
			iiate 91	short- (5 ye		Long-term (beyond)			
1.	Data vs. Action	Da	ta				-		
2.	Technical vs. Polit./Regulatory	Regul	atory						
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)		
	3.1 All Water	0	100						
	3.2 Total Wastewater								
	3.3 Point-source discharges								
	3.4 Sources to groundwater								
	3.5 Surface runoff								
	3.6 Domestic waste								
	3.7 Misc. losses								
4.	Financial Impact		0						
5.	Environmental Impact		0						
6.	Input from/to Other Tasks (enumerate):	4,30							
7.	Input from WR Plan								
8.	Input from Monitoring	US	SGS						

Water Management Summary Task 17: Alternatives to Zero Discharge Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-16
Water Management Summary Task 18:
Drain Study

	Dimension		Time Element						
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)			
1.	Data vs. Action	Da	ta				-		
2.	Technical vs. Polit./Regulatory	Techr	nical						
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)		
	3.1 All Water	0	100						
	3.2 Total Wastewater								
	3.3 Point-source discharges								
	3.4 Sources to groundwater								
	3.5 Surface runoff								
	3.6 Domestic waste								
	3.7 Misc. losses								
4.	Financial Impact)		•				
5.	Environmental Impact)						
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	4,30			·				
7.	Input from WR Plan								
8.	Input from Monitoring	us	GS						

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Water Management Summary Task 18: Drain Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task Precludes Further Reduction in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991
Revision: 0

F-37

Table F-17

Water Management Summary for Task 19 (Alternative 0):
Process Waste Minimization Study

Dimension	Time Element					
	Immediate FY 91		Short-term (5 years)		Long-term (beyond)	
1. Data vs. Action	Act	Lon	Acti	on	Acti	on
2. Technical vs. Polit./Regulatory	Regula	atory	Regula	tory	Regulatory	
3. System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
3.1 All Water	0	100	-7.9	75	0	100
3.2 Total Wastewater					- -	
3.3 Point-source discharges						
3.4 Sources to groundwater						
3.5 Surface runoff						
3.6 Domestic waste			-7.9	75		
3.7 Misc. losses						
4. Financial Impact	()	?		?	
5. Environmental Impact		L	1		1	
6. Input from/to Other Tasks (enumerate):	30		same		sar	me
7. Input from WR Plan						
8. Input from Monitoring	_	_				

Water Management Summary for Task 19 (Alternative 0): Process Waste Minimization Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	System Relationship Remar Affected		
None				

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991
Revision: 0

F-39

Water Management Summary for Task 19 (Alternative 1): Process Waste Minimization Study

	Dimension		Time Element						
			Immediate FY 91		Short-term (5 years)		term ond)		
1.	Data vs. Action	Act	ion	Acti	on	Acti	ion		
2.	Technical vs. Polit./Regulatory	Regulatory		Regula	tory	Regulatory			
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)		
	3.1 All Water	0	100	2.3	75	0	100		
	3.2 Total Wastewater								
	3.3 Point-source discharges								
	3.4 Sources to groundwater								
	3.5 Surface runoff								
	3.6 Domestic waste			2.3	75				
	3.7 Misc. losses								
4.	Financial Impact		0	?		?			
5.	Environmental Impact		1	1			L		
6.	Input from/to Other Tasks (enumerate):	30		sar	ne	sa	me		
7.	Input from WR Plan								
8.	Input from Monitoring								

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Water Management Summary for Task 19 (Alternative 1): Process Waste Minimization Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 - Causes Increase in Present Task
- E. Other (Explain in Remarks)

Water Management Summary for Task 19 (Alternative 2): Process Waste Minimization Study

	Dimension	Time Element						
			Immediate FY 91		Short-term (5 years)		erm nd)	
1.	Data vs. Action	Act	ion	Acti	on	Acti	on	
2.	Technical vs. Polit./Regulatory	Regul	atory	Regula	tory	Regulatory		
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	
	3.1 All Water	0	100	-10.2	75	0	100	
	3.2 Total Wastewater							
	3.3 Point-source discharges							
	3.4 Sources to groundwater							
	3.5 Surface runoff							
	3.6 Domestic waste			-10.2	75			
	3.7 Misc. losses							
4.	Financial Impact		0	?		?		
5.	Environmental Impact		1	1		1		
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	30		same		same		
7.	Input from WR Plan							
8.	Input from Monitoring	-						

Water Management Summary for Task 19 (Alternative 2): Process Waste Minimization Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-18

Water Management Summary for Task 20:
Domestic and Process Water Pipeline Leak Study

	D	imension		7 2	Time Ele	ement		
			Immediate FY 91		Short-term (5 years)		Long-term (beyond)	
1.	Data	vs. Action	Dat	ta	Dat	a	Dat	a
2.		ical vs. ./Regulatory	Techn	ical	Techni	ical	Techni	calry
3.	(Chan	m Impact ge in MGY going te; plus dence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1	All Water	0	100	0	100	0	100
	3.2	Total Wastewater						
	3.3	Point-source discharges						
	3.4	Sources to groundwater						
	3.5	Surface runoff						
	3.6	Domestic waste						
	3.7	Misc. losses						
4.	Finan	cial Impact	()	?		3)
5.	Envir	onmental Impact		L	1		1	
6.		<pre>from/to Other (enumerate):</pre>	3	0	san	ne	same	
7.	Input	from WR Plan						
8.	Input	from Monitoring	_	-				

Table F-19

Water Management Summary for Task 20: Domestic and Process Water Pipeline Leak Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			
L			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

B.

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
 - Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

FINAL Date: May 28, 1991

Table F-20
Water Management Summary Task 21 (Alternative 0):
Temporary Water Storage Capabilities Study

	Dimension			Time Ele	ment		
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)	
1.	1. Data vs. Action		ion	Acti	on	Acti	on
2.	Technical vs. Polit./Regulatory	Regulatory		Techni	cal	Techn	ical
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1 All Water	0	100	-121.5	50	?	
	3.2 Total Wastewater			-44.1	50		
	3.3 Point-source discharges						
	3.4 Sources to groundwater			-3.3	50		
	3.5 Surface runoff			-40.8	50		
	3.6 Domestic waste			-77.4	50		
	3.7 Misc. losses			0			
4.	Financial Impact	()	12.8	М	?	
5.	Environmental Impact)	6		6	
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	Input from: 6,9,10, 11/13,16		Output 5,14,1 23,24 27,28	.5,17 ,26,	10,1	2,30
7.	Input from WR Plan					_	_
8.	Input from Monitoring	-			•		

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991

F-46

Water Management Summary Task 21 (Alternative 0): Temporary Water Storage Capabilities Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
11/13	6	A	
8	4	A	
26	4	A	
15	1	A	
<u> </u>	<u>-</u>	.1	

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991

F-47

Water Management Summary Task 21 (Alternative 1): Temporary Water Storage Capabilities Study

	Dimension	Time Element						
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)		
1.	Data vs. Action	Acti	Lon	Acti	on	Acti	on	
2.	Technical vs. Polit./Regulatory	Regulatory		Techni	.cal	Techn	ical	
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	
	3.1 All Water	0	100	-126.3	50	?		
	3.2 Total Wastewater			-80.7	50			
	3.3 Point-source discharges							
	3.4 Sources to groundwater			-3.3	50			
	3.5 Surface runoff			-45.6	50			
	3.6 Domestic waste			-77.4	50			
	3.7 Misc. losses			0				
4.	Financial Impact		0	91.1	L M	?		
5.	Environmental Impact		0	6		6	5	
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	Input from: 6,9,10, 11/13,16		Output 5,14,2 23,24 27,28	L5,17 ,26,	10,1	2,30	
7.	Input from WR Plan					_	_	
8.	Input from Monitoring	-				-	_	

F-48

Study of Water
Resource Management
Zero-Offsite Water-Discharge Study

Water Management Summary Task 21 (Alternative 1): Temporary Water Storage Capabilities Study

Reporting Dimensions Supplement Task Interrelationships

T T		I	
Task Providing Input	System Affected	Relationship	Remarks
11/13	6	A	
8	4	A	
26	4	A	
15	1	A	

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Water Management Summary Task 21 (Alternative 2): Temporary Water Storage Capabilities Study

	Dimension	Time Element						
			liate 91	Short- (5 yea		Long- (beyo		
1.	Data vs. Action	Action		Acti	on	Acti	Lon	
2.	Technical vs. Polit./Regulatory	Regulatory		Techni	ical	Techn	ical	
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	
	3.1 All Water	0	100	-121.5	50	?		
	3.2 Total Wastewater			-44.1	50			
	3.3 Point-source discharges							
	3.4 Sources to groundwater			-3.3	50			
	3.5 Surface runoff			-40.8	50			
	3.6 Domestic waste			-77.4	50			
	3.7 Misc. losses			0				
4.	Financial Impact		0	16.3	М	3)	
5.	Environmental Impact		0	6		6	5	
6.	Input from/to Other Tasks (enumerate):	Input from: 6,9,10, 11/13,16		Output 5,14,1 23,24 27,28	.5,17 ,26,	10,1	2,30	
7.	Input from WR Plan		-			-	_	
8.	Input from Monitoring					-	_	

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Water Management Summary Task 21 (Alternative 2): **Temporary Water Storage Capabilities Study**

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
11/13	6	A	
8	4	A	
26	4	A	
15	1	A	

Codes:

System Affected:

- 1. All Water
- Total Wastewater 2.
- Point-source Discharges 3.
- Groundwater 4.
- 5. Surface Runoff
- Domestic Waste 6.
- Miscellaneous Losses 7.

Relationship:

- MGY Reduction in Input Task A. Precludes Further Reduction in Present Task
 - Reductions are additive
- В. Increase in Input Task Allows C. Reduction in Present Task
- Reduction in Input Task D.
- Other (Explain in Remarks) E.

Causes Increase in Present Task

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-21
Water Management Summary for Task 22:
Ground-Water Recharge Study

	D	imension			Time Ele	ement		
			Immediate FY 91		Short-term (5 years)		Long-term (beyond)	
1.	Data	vs. Action	Da	ta	Dat	a	Dat	a
2.		ical vs. ./Regulatory	Regul	atory	Regula	tory	Regula	tory
3.	(Chan offsi	m Impact ge in MGY going te; plus dence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
	3.1	All Water	0	100	0	100	0	100
	3.2	Total Wastewater						
	3.3	Point-source discharges						
	3.4	Sources to groundwater						
	3.5	Surface runoff						
	3.6	Domestic waste						
	3.7	Misc. losses						
4.	Finar	ncial Impact		0	?		?	
5.	Envi	conmental Impact		1	1		1	
6.	Input Tasks	from/to Other (enumerate):	30		same		saı	ne
7.	Input	from WR Plan						
8.	Input	from Monitoring	-			_		

Water Management Summary for Task 22: Ground-Water Recharge Study

Reporting Dimensions Supplement Task Interrelationships

			T Total Control Control
Task Providing Input	System Affected	Relationship	Remarks
None			
V			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows
 Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-22

Water Management Summary for Task 24:
Bypass Upstream Flows Around Rocky Flats Plant Study

Dimension		Time Element						
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)		
1.	Data vs. Action	Dat	ta	Dat	a	Data		
2.	Technical vs. Polit./Regulatory	Regula	atory	Regula	tory	Regulatory		
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	
	3.1 All Water	0	100	0	100	0	100	
	3.2 Total Wastewater							
	3.3 Point-source discharges							
	3.4 Sources to groundwater							
	3.5 Surface runoff							
	3.6 Domestic waste							
	3.7 Misc. losses							
4.	Financial Impact	C)	?		?		
5.	Environmental Impact]		1		1		
6.	Input from/to Other Tasks (enumerate):	30		same		same		
7.	Input from WR Plan							
8.	Input from Monitoring	-	-					

Water Management Summary for Task 24: Bypass Upstream Flows Around Rocky Flats Plant Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			
77-7	<u> </u>	<u> </u>	1

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

В.

- A. MGY Reduction in Input Task Precludes Further Reduction
 - in Present Task
 Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

FINAL Date: May 28, 1991

Table F-23

Water Management Summary for Task 25:
Study of Downstream Erosion Potential

	Dimension		Time Element						
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)			
1.	Data vs. Action	Dat	ta	Dat	a	Dat	a		
2.	Technical vs. Polit./Regulatory	Regul	atory	Regula	tory	Regula	tory		
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)		
	3.1 All Water	0	100	0	100	0	100		
	3.2 Total Wastewater								
	3.3 Point-source discharges								
	3.4 Sources to groundwater								
	3.5 Surface runoff								
	3.6 Domestic waste								
	3.7 Misc. losses								
4.	Financial Impact	()	?		?			
5.	Environmental Impact		L	1		1			
6.	<pre>Input from/to Other Tasks (enumerate):</pre>	30		same		san	ne		
7.	Input from WR Plan					·			
8.	Input from Monitoring	_							

Water Management Summary for Task 25: Study of Downstream Erosion Potential

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			
	······································		

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-24

Water Management Summary for Task 26:
Feasibility of Ground-Water Cutoff/Diversion Study

Dimension		Time Element						
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)		
1.	Data vs. Action	Act	ion	Acti	on	Acti	.on	
2.	Technical vs. Polit./Regulatory	Regul	atory	Regula	tory	Regulatory		
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	
	3.1 All Water	0	100	0	100	0	100	
	3.2 Total Wastewater							
	3.3 Point-source discharges							
	3.4 Sources to groundwater							
	3.5 Surface runoff							
	3.6 Domestic waste							
	3.7 Misc. losses							
4.	Financial Impact	()	?	·	?		
5.	Environmental Impact		L	1		1		
6.	Input from/to Other Tasks (enumerate):	30		same		san	ne	
7.	Input from WR Plan							
8.	Input from Monitoring	_	_					

Water Management Summary for Task 26: Feasibility of Ground-Water Cutoff/Diversion Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			
	· · · · · · · · · · · · · · · · · · ·		

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-25

Water Management Summary for Task 27:
Waste Generation Treatment Study

Dimension			Time Ele	ment		
	Immediate FY 91		Short-term (5 years)		Long-term (beyond)	
1. Data vs. Action	Dat	:a	Dat	a	Dat	.a
2. Technical vs. Polit./Regulatory	Regula	atory	Regula	tory	Regulatory	
3. System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)
3.1 All Water	0	100	0	100	0	100
3.2 Total Wastewater						
3.3 Point-source discharges						
3.4 Sources to groundwater						_
3.5 Surface runoff						
3.6 Domestic waste						
3.7 Misc. losses						
4. Financial Impact	()	?		?	
5. Environmental Impact		Ļ	1		1	
6. Input from/to Other Tasks (enumerate):	30		san	ne	saı	me
7. Input from WR Plan						
8. Input from Monitoring	_	_			-	-

Water Management Summary for Task 27: Waste Generation Treatment Study

Reporting Dimensions Supplement Task Interrelationships

	· · · · · · · · · · · · · · · · · · ·		
Task Providing Input	System Affected	Relationship	Remarks
None			
		-	

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows
 Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study FINAL Date: May 28, 1991
Revision: 0

F-61

Table F-26

Water Management Summary for Task 28:
Augmentation Plan for the Rocky Flats Plant

	Dimension		Time Element						
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)			
1.	Data vs. Action	Dat	a	Dat	a	Data			
2.	Technical vs. Polit./Regulatory	Regula	atory	Regula	tory	Regula	tory		
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)		
	3.1 All Water	0	100	0	100	0	100		
	3.2 Total Wastewater								
	3.3 Point-source discharges								
	3.4 Sources to groundwater								
	3.5 Surface runoff								
	3.6 Domestic waste								
	3.7 Misc. losses								
4.	Financial Impact	0	1	?		?	. ·		
5.	Environmental Impact	1		1		1			
6.	Input from/to Other Tasks (enumerate):	30		same		san	ne		
7.	Input from WR Plan								
8.	Input from Monitoring	_	-				_		

Water Management Summary for Task 28: Augmentation Plan for the Rocky Flats Plant

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

B.

- A. MGY Reduction in Input Task
 Precludes Further Reduction
 in Present Task
 - Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task

Causes Increase in Present Task

E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study

Table F-27

Water Management Summary for Task 29:
Non-Tributary Ground-Water Study

Dimension		Time Element						
		Immediate FY 91		Short-term (5 years)		Long-term (beyond)		
1.	Data vs. Action	Dat	ta	Dat	a	Data		
2.	Technical vs. Polit./Regulatory	Regul	atory	Regula	tory	Regula	tory	
3.	System Impact (Change in MGY going offsite; plus confidence factor)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	Delta MGY	Conf fact (%)	
	3.1 All Water	0	100	0	100	0	100	
	3.2 Total Wastewater							
	3.3 Point-source discharges							
	3.4 Sources to groundwater							
	3.5 Surface runoff							
	3.6 Domestic waste							
	3.7 Misc. losses							
4.	Financial Impact	()	?		?		
5.	Environmental Impact		1.	1		1		
6.	Input from/to Other Tasks (enumerate):	30		same		sar	ne	
7.	Input from WR Plan							
8.	Input from Monitoring	_						

Water Management Summary for Task 29: Non-Tributary Ground-Water Study

Reporting Dimensions Supplement Task Interrelationships

Task Providing Input	System Affected	Relationship	Remarks
None			
	-		
<u> </u>			

Codes:

System Affected:

- 1. All Water
- 2. Total Wastewater
- 3. Point-source Discharges
- 4. Groundwater
- 5. Surface Runoff
- 6. Domestic Waste
- 7. Miscellaneous Losses

Relationship:

- A. MGY Reduction in Input Task Precludes Further Reduction in Present Task
- B. Reductions are additive
- C. Increase in Input Task Allows Reduction in Present Task
- D. Reduction in Input Task
 Causes Increase in Present Task
- E. Other (Explain in Remarks)

Study of Water Resource Management Zero-Offsite Water-Discharge Study